20.已知函數(shù)f(x)=ax2+ln(x+1).
(Ⅰ)當(dāng)a=-$\frac{1}{4}$時(shí),函數(shù)g(x)=f(x)-k在[0,2]內(nèi)有兩個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;
(Ⅱ)當(dāng)x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍.

分析 (I)判斷f(x)在[0,2]上的單調(diào)性,求出f(x)在[0,2]內(nèi)單調(diào)區(qū)間端點(diǎn)的函數(shù)值,根據(jù)零點(diǎn)個(gè)數(shù)得出k的范圍;
(II)令h(x)=f(x)-x,對(duì)a進(jìn)行討論判斷h(x)在[0,+∞)上的單調(diào)性,令hmin(x)≤0即可.

解答 解:(I)a=-$\frac{1}{4}$時(shí),f(x)=-$\frac{1}{4}$x2+ln(x+1),
f(x)的定義域?yàn)椋?1,+∞).
∴f′(x)=-$\frac{1}{2}$x+$\frac{1}{x+1}$,令f′(x)=0得x=1或x=-2(舍).
∴當(dāng)-1<x<1時(shí),f′(x)>0,當(dāng)x>1時(shí),f′(x)<0,
∴f(x)在[0,1)上為增函數(shù),在(1,2]上為減函數(shù),
且f(0)=0,f(1)=ln2-$\frac{1}{4}$,f(2)=ln3-1>0.
∵函數(shù)g(x)=f(x)-k在[0,2]內(nèi)有兩個(gè)零點(diǎn),
∴方程f(x)=k在[0,2]上有兩解,
∴l(xiāng)n3-1≤k<ln2-$\frac{1}{4}$.
(II)令h(x)=f(x)-x=ax2-x+ln(x+1),
則h(x)≤0在[0,+∞)上恒成立,∴hmax(x)≤0.
h′(x)=2ax+$\frac{1}{x+1}$-1,
(1)當(dāng)a≤0時(shí),2ax≤0,$\frac{1}{x+1}-1$≤0,∴h′(x)=≤0,∴h(x)在[0,+∞)上為減函數(shù),
∴hmax(x)=h(0)=0,符合題意.
(2)當(dāng)a>0時(shí),令h′(x)=0,即2ax2+(2a-1)x=0,解得x=0或x=$\frac{1-2a}{2a}$=$\frac{1}{2a}$-1.
①若$\frac{1}{2a}-1$≤0,即a≥$\frac{1}{2}$時(shí),h′(x)≥0在[0,+∞)上恒成立,
∴h(x)在[0,+∞]上為增函數(shù),∴當(dāng)x>0時(shí),h(x)>h(0)=0,不符合題意.
②若$\frac{1}{2a}-1$>0,即0<a$<\frac{1}{2}$時(shí),則當(dāng)x∈(0,$\frac{1}{2a}-1$)時(shí),h′(x)<0,當(dāng)x∈($\frac{1}{2a}-1$,+∞)時(shí),h′(x)>0.
∴h(x)在[0,$\frac{1}{2a}-1$)上為減函數(shù),在($\frac{1}{2a}-1$,+∞)上為增函數(shù),
且x→+∞時(shí),h(x)→+∞,不符合題意.
綜上,a的取值范圍是(-∞,0].

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性與極值,函數(shù)零點(diǎn)的判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2-(2a+1)x+alnx(a∈R).
(Ⅰ)若f(x)在區(qū)間[1,2]上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)函數(shù)g(x)=(1-a)x,若?x0∈[1,e]使得f(x0)≥g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在空間直角坐標(biāo)系中,點(diǎn)P(-1,8,4)關(guān)于X軸對(duì)稱點(diǎn)坐標(biāo)為(  )
A.(-1,-8,-4)B.(1,8,4)C.(-1,-8,-4)D.(1,-8,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)求值(tan10°-$\sqrt{3}$)•sin40°    
(2)化簡(jiǎn)$\frac{2co{s}^{4}x-2co{s}^{2}x+\frac{1}{2}}{2tan(\frac{π}{4}-x)si{n}^{2}(\frac{π}{4}+x)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖(1),在三角形PCD中,AB為其中位線,且2BD=PC=2$\sqrt{6}$,CD=2$\sqrt{2}$,若沿AB將三角形PAB折起,使∠PAD=120°,構(gòu)成四棱錐P-ABCD,如圖(2),E和F分別是棱CD和PC的中點(diǎn),
(1)求證:平面BEF⊥平面PCD;
(2)求平面PBC與平面PAD所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=eax-$\frac{1}{a}$lnx(a>0)存在零點(diǎn),則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{e}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,短軸長(zhǎng)為2,過圓C:x2+y2=r2(0<r<b)上任意一點(diǎn)作圓C的切線與橢圓E交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)當(dāng)r為何值時(shí),OA⊥OB;
(2)過橢圓E上任意一點(diǎn)P作(1)中所求圓的兩條切線分別交橢圓于M,N,求△PMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,且橢圓C上一點(diǎn)M與橢圓左右兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為4+2$\sqrt{2}$.
(1)求橢圓C的方程;
(2)如圖,設(shè)點(diǎn)D為橢圓上任意一點(diǎn),直線y=m和橢圓C交于A、B兩點(diǎn),直線DA、DB與y軸的交點(diǎn)分別為P、Q,求證:∠PF1F2+∠QF1F2=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=$\frac{3}{2}$an+n-3.
(1)求證:數(shù)列{an-1}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)令cn=log3(a1-1)+log3(a2-1)+…+log3(an-1),對(duì)任意n∈N*,$\frac{1}{c_1}$+$\frac{1}{c_2}$+…+$\frac{1}{c_n}$<k都成立,求k的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案