分析 (1)取PC的中點(diǎn)G,連接FG、EG,證出AF∥EG,由線面平行的判定定理,即可證出:AF∥平面PCE.
(2)先證出AF⊥平面PCD,再由(1),可證EG⊥平面PCD,由面面垂直的判定定理即可證出平面PCE⊥平面PCD;
(3)過(guò)點(diǎn)D作DH⊥PC于H,DH的長(zhǎng)為點(diǎn)D到平面PEC的距離.
解答 (1)證明:取PC的中點(diǎn)為G,連結(jié)FG、EG
∵FG∥DC,F(xiàn)G=$\frac{1}{2}$DC,DC∥AB,AE=$\frac{1}{2}$AB
∴FG∥AE且 FG=A
∴四邊形AFGE為平行四邊形,
∴AF∥EG.
又∵AF?平面PCE,EG?平面PCE,
∴AF∥平面PCE…(4分)
(2)證明:∵PA⊥平面ABCD,AD⊥D,∴PD⊥DC
∴∠PDA為二面角P-CD-B的平面角,∴∠PDA=45°,即△PAD為等腰直角三角形
又∵F為PD的中點(diǎn),∴AF⊥PD ①
由DC⊥AD,DC⊥PD,AD∩PD=D,
得:DC⊥平面PAD.
而AF?平面PAD,
∴AF⊥DC ②
由①②得AF⊥平面PDC.
而EG∥AF
∴EG⊥平面PDC,
又EG?平面PCE,
∴平面PCE⊥平面PDC…(8分)
(3)解:過(guò)點(diǎn)D作DH⊥PC于H.
∵平面PCE⊥平面PDC,∴DH⊥平面PEC.
即DH的長(zhǎng)為點(diǎn)D到平面PEC的距離.
在Rt△PAD中,PA=AD=a,PD=$\sqrt{2}$a
在Rt△PDC中,PD=$\sqrt{2}$a,CD=a,
PC=$\sqrt{3}$a,DH=$\frac{\sqrt{6}}{3}$a.
即:點(diǎn)D到平面PCE的距離為$\frac{\sqrt{6}}{3}$a…(12分)
點(diǎn)評(píng) 本題考查線面位置關(guān)系,面面位置關(guān)系的判定,空間角的求解.考查空間想象能力,轉(zhuǎn)化思想,計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平行 | B. | 相交 | C. | 異面 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1條 | B. | 2條 | C. | 3條 | D. | 4條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 消耗1升汽油,乙車最多可行駛5千米 | |
B. | 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多 | |
C. | 某城市機(jī)動(dòng)車最高限速80千米/小時(shí),相同條件下,在該市用丙車比用乙車更省油 | |
D. | 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,2) | B. | (1,0) | C. | (1,2) | D. | (0,3) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com