(2013•遼寧)已知函數(shù)f(x)滿足f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的較大值,min(p,q)表示p,q中的較小值),記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=( 。
分析:本選擇題宜采用特殊值法.取a=-2,則f(x)=x2+4,g(x)=-x2-8x+4.畫出它們的圖象,如圖所示.從而得出H1(x)的最小值為兩圖象右邊交點的縱坐標,H2(x)的最大值為兩圖象左邊交點的縱坐標,再將兩函數(shù)圖象對應的方程組成方程組,求解即得.
解答:解:取a=-2,則f(x)=x2+4,g(x)=-x2-8x+4.畫出它們的圖象,如圖所示.
則H1(x)的最小值為兩圖象右邊交點的縱坐標,H2(x)的最大值為兩圖象左邊交點的縱坐標,
x2+4=y
-x2-8x+4=y

解得
x=0
y=4
x=-4
y=20
,
∴A=4,B=20,A-B=-16.
故選C.
點評:本題主要考查了二次函數(shù)的圖象與性質(zhì)、函數(shù)最值的應用等,考查了數(shù)形結(jié)合的思想,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•遼寧)已知三棱柱ABC-A1B1C1的6個頂點都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,則球O的半徑為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•遼寧)已知函數(shù)f(x)=ln(
1+9x2
-3x)+1,則f(lg2)+f(lg
1
2
)
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•遼寧)已知集合A={0,1,2,3,4},B={x||x|<2},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•遼寧)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點F,C與過原點的直線相交于A,B兩點,連結(jié)AF,BF,若|AB|=10,|AF|=6,cos∠ABF=
4
5
,則C的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•遼寧)已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的較大值,min{p,q}表示p,q中的較小值),記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=( 。

查看答案和解析>>

同步練習冊答案