求雙曲線16x2-9y2=-144的實軸長、焦點坐標(biāo)、離心率和漸近線方程.
雙曲線16x2-9y2=-144可化為
y2
16
-
x2
9
=1
,
所以a=4,b=3,c=5,
所以,實軸長為8,焦點坐標(biāo)為(0,5)和(0,-5),
離心率e=
c
a
=
5
4
,漸近線方程為y=±
a
b
x
=±
4
3
x
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以F1(-4,0),F(xiàn)2(4,0)為焦點的等軸雙曲線的標(biāo)準(zhǔn)方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線C的一條漸近線方程為x-2y=0,則該雙曲線的離心率e=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線
x2
a2
-
y2
b2
=1
的兩條漸近線互相垂直,則該雙曲線的離心率是( 。
A.
3
B.
3
2
C.2D.
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若雙曲線C與雙曲線
x2
12
-
y2
8
=1
共漸近線,且過點A(3,
2
)
,則雙曲線C的方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線x=3與雙曲線C:
x2
9
-
y2
4
=1的漸近線交于E1,E2兩點,記
OE1
=
e1
OE2
=
e2
,任取雙曲線上的點P,若
OP
=a
e1
+b
e2
(a,b∈R),則下列關(guān)于a,b的表述:
①4ab=1②0<a2+b2
1
2
③a2+b2≥1④a2+b2
1
2
⑤ab=1
其中正確的是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,F(xiàn)為雙曲線C:
x2
9
-
y2
16
=1
的左焦點,雙曲線C上的點Pi與P7-i(i=1,2,3)關(guān)于y軸對稱,則|P1F|+|P2F|+|P3F|-|P4F|-|P5F|-|P6F|的值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1、F2為雙曲線C:
x2
16
-
y2
20
=1
的左、右焦點,P在雙曲線上,且PF2=5,則cos∠PF1F2______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線x2-y2=1的一弦中點為(2,1),則此弦所在的直線的方程為(  )
A.y=2x-1B.y=2x-2C.y=2x-3D.y=2x+3

查看答案和解析>>

同步練習(xí)冊答案