已知數(shù)列{an}中,a1=1,且點(diǎn)(an,an+1)在函數(shù)f(x)=x+2的圖象上(n∈N*).
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)在數(shù)列{an}中依次取出第1項(xiàng),第2項(xiàng),第4項(xiàng),第8項(xiàng),…,第2n-1項(xiàng),按取出順序組成新的數(shù)列{bn},寫出數(shù)列{bn}的前三項(xiàng)b1,b2,b3,并求數(shù)列{bn}的通項(xiàng)bn及前n項(xiàng)和Sn

解:(Ⅰ)∵點(diǎn)(an,an+1)在函數(shù)f(x)=x+2的圖象上,
∴an+1=an+2.(2分).
∴an+1-an=2,即數(shù)列an是以a1=1為首項(xiàng),2為公差的等差數(shù)列,(4分).
∴an=1+(n-1)×2=2n-1.(6分)
(Ⅱ)依題意知:b1=1,b2=3,b3=7
bn=2•2n-1-1=2n-1
所以Sn=(21-1)+(22-1)+…+(2n-1)
=2n+1-n-2
即數(shù)列{bn}的前n項(xiàng)和Sn==2n+1-n-2
分析:(Ⅰ)由題意可得an+1-an=2,從而得到數(shù)列{an}為等差數(shù)列,代入等差數(shù)列的通項(xiàng)公式可得an
(Ⅱ)由題意得bn=2n-1觀察通項(xiàng)公式可知采用分組求和,再分別代入等比數(shù)列及等差數(shù)列的求和公式.
點(diǎn)評(píng):主要考查等差數(shù)列同項(xiàng)公式的求解,屬于公式的基本運(yùn)用.求數(shù)列的前n項(xiàng)和的關(guān)鍵是求出通項(xiàng),從而分別利用等差數(shù)列及等比數(shù)列的求和公式代入求值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項(xiàng)公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
2n
an
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=
1
2
Sn
為數(shù)列的前n項(xiàng)和,且Sn
1
an
的一個(gè)等比中項(xiàng)為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊(cè)答案