精英家教網 > 高中數學 > 題目詳情

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知 =
(1)求角C的大小;
(2)若c=2,求△ABC面積最大值.

【答案】
(1)解:∵ =

,

∴sinBcosC﹣2sinAcosC=﹣cosBsinC,

∴sinA=2sinAcosC,

∵sinA≠0,

,


(2)解:∵ ,可得:ab≤4,

,即:△ABC面積的最大值為 ,但且僅當△ABC為等邊三角形時成立


【解析】(1)利用正弦定理,三角函數恒等變換的應用化簡已知等式可得sinA=2sinAcosC,結合sinA≠0,可得 ,即可得解C的值.(2)利用已知及余弦定理,基本不等式可得ab≤4,進而根據三角形面積公式即可計算得解.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F,若過點F且斜率為1的直線與拋物線相交于M,N兩點,且|MN|=8.
(1)求拋物線C的方程;
(2)設直線l為拋物線C的切線,且l∥MN,P為l上一點,求 的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一個口袋有m個白球,n個黑球(m,n ,n 2),這些球除顏色外全部相同。現將口袋中的球隨機的逐個取出,并放入如圖所示的編號為1,2,3,……,m+n的抽屜內,其中第k次取球放入編號為k的抽屜(k=1,2,3,……,m+n).

(1)試求編號為2的抽屜內放的是黑球的概率p;

(2)隨機變量x表示最后一個取出的黑球所在抽屜編號的倒數,E(x)是x的數學期望,證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c,且b=acosc+ csinA.
(1)求角A的大小;
(2)當a=3時,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】各棱長都等于4的四面ABCD中,設G為BC的中點,E為△ACD內的動點(含邊界),且GE∥平面ABD,若 =1,則| |=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在平面直角坐標系xOy中,設橢圓E: =1(a>b>0),其中b= a,F為橢圓的右焦點,P(1,1)為橢圓E內一點,PF⊥x軸.

(1)求橢圓E的方程;
(2)過P點作斜率為k1 , k2的兩條直線分別與橢圓交于點A,C和B,D.若滿足|AP||PC|=|BP||DP|,問k1+k2是否為定值?若是,請求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,tanA是以﹣4為第三項,4為第七項的等差數列的公差,tanB是以 為第三項,9為第六項的等比數列公比,則這個三角形是( )
A.鈍角三角形
B.銳角三角形
C.等腰直角三角形
D.以上都不對

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , 對一切正整數n,點Pn(n,Sn)都在函數f(x)=x2+2x的圖象上,記an與an+1的等差中項為kn
(1)求數列{an}的通項公式;
(2)若 ,求數列{bn}的前n項和Tn
(3)設集合 ,等差數列{cn}的任意一項cn∈A∩B,其中c1是A∩B中的最小數,且110<c10<115,求{cn}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(1)若,求曲線處的切線方程;

(2)若當時, ,求的取值范圍.

查看答案和解析>>

同步練習冊答案