如圖所示,已知平行四邊形ABCD的對角線AC=57cm,它與兩條鄰邊AB和AD的夾角分別是,求AB和AD(精確到1cm).

答案:37cm,29cm
解析:

解:

在△ABC中,AC57,

由正弦定理,得(cm)

在△ADC中,AC57,,,

(cm)


提示:

由平行四邊形的性質(zhì),可得.于是,分別于△ABC與△ACD中,由正弦定理求解ABAD

在三角形中進行幾何計算,除了應(yīng)用正弦定理、余弦定理,還要注意所給圖形的幾何特征,這也是促進已知向未知轉(zhuǎn)化的重要過程.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
(1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點P.設(shè)∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
(2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
(1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點P.設(shè)∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
(2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)

一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.

若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點P。設(shè),試用表示木棒MN和長度。

若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省蘇北四市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
(1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點P.設(shè)∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
(2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省徐州市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
(1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點P.設(shè)∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
(2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

查看答案和解析>>

同步練習(xí)冊答案