11.正三棱柱ABC-A1B1C1中,若AC=$\sqrt{2}$AA1,則AB1與CA1所成角的大小為( 。
A.60°B.105°C.75°D.90°

分析 以A為原點,過A在平面ABC內(nèi)作AC的垂線為x軸,AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出AB1與CA1所成角的大。

解答 解:以A為原點,過A在平面ABC內(nèi)作AC的垂線為x軸,AC為y軸,AA1為z軸,
建立空間直角坐標(biāo)系,
設(shè)AC=$\sqrt{2}$AA1=2$\sqrt{2}$,
則A(0,0,0),C(0,2$\sqrt{2}$,0),A1(0,0,2),B1($\sqrt{6}$,$\sqrt{2}$,2),
$\overrightarrow{A{B}_{1}}$=($\sqrt{6},\sqrt{2},2$),$\overrightarrow{C{A}_{1}}$=(0,-2$\sqrt{2}$,2),
設(shè)AB1與CA1所成角的大小為θ,
則cosθ=$\frac{|\overrightarrow{A{B}_{1}}•\overrightarrow{C{A}_{1}}|}{|\overrightarrow{A{B}_{1}}|•|\overrightarrow{C{A}_{1}}|}$=0,
∴AB1與CA1所成角的大小為90°.
故選:D.

點評 本題考查異面直線所成角的大小的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知關(guān)于x的一元二次方程x2-2(a-2)-b2+16=0.
(1)若a、b是一枚骰子擲兩次所得到的點數(shù),求方程有兩正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程沒有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖AB是圓O的直徑,點C是弧AB上一點,VC垂直圓O所在平面,D,E分別為VA,VC的中點.
(1)求證:DE⊥VB;
(2)若VC=CA=6,圓O的半徑為5,求點E到平面BCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.奇函數(shù)f(x)是R上的函數(shù),且當(dāng)x>0時,函數(shù)的解析式為$f(x)=\frac{2}{x}-1$
(1)求當(dāng)x<0時,函數(shù)的解析式.
(2)用分段函數(shù)形式寫出函數(shù)f(x)在R上的解析式.當(dāng)f(a)=3時,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知某幾何體的三視圖如圖所示,則該幾何體的外接球表面積為8π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在圓x2+y2=4上,與直線 l:4x+3y-12=0的距離最大的點的坐標(biāo)是( 。
A.$({\frac{8}{5},\frac{6}{5}})$B.$({\frac{8}{5},-\frac{6}{5}})$C.$({-\frac{8}{5},-\frac{6}{5}})$D.$({-\frac{8}{5},\frac{6}{5}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a>b>0,則下列不等式一定成立的是( 。
A.$a+\frac{1}>b+\frac{1}{a}$B.$\frac{a}>\frac{b+1}{a+1}$C.$a-\frac{1}>b-\frac{1}{a}$D.$\frac{2a+b}{a+2b}>\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖甲,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,E是AD的中點,O是AC與BE的交點,將△ABE沿BE折起到△A1BE的位置,如圖乙.

(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求BC與平面A1CD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$cos\frac{4π}{5}cos\frac{7π}{15}+sin\frac{4π}{5}sin\frac{7π}{15}$=$\frac{2}{3}+cos(\frac{π}{2}+x)cosx$則sin2x等于( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{1}{12}$D.-$\frac{1}{12}$

查看答案和解析>>

同步練習(xí)冊答案