如圖,在Rt△AOB中,∠OAB=
π
6
,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動點(diǎn)D在斜邊AB上.
(I)求證:平面COD⊥平面AOB;
(II)當(dāng)D為AB的中點(diǎn)時(shí),求異面直線AO與CD所成角的余弦值大。
(III)求CD與平面AOB所成角最大時(shí)的正切值大。
精英家教網(wǎng)

精英家教網(wǎng)
(I)由題意,CO⊥AO,BO⊥AO,∴∠BOC是二面角B-AO-C是直二面角,
又∵二面角B-AO-C是直二面角,
∴CO⊥BO,
又∵AO∩BO=O,
∴CO⊥平面AOB,
又CO?平面COD,
∴平面COD⊥平面AOB.(4分)
(II)解法一:作DE⊥OB,垂足為E,連接CE(如圖),則DEAO,
∴∠CDE是異面直線AO與CD所成的角.
在 Rt△COE中,CO=BO=2,OE=
1
2
BO=1
,
CE=
CO2+OE2
=
5

DE=
1
2
AO=
3

CD=
CE2+DE2
=2
2

∴在Rt△CDE中,cos∠CDE=
DE
CD
=
3
2
2
=
6
4

∴異面直線AO與CD所成角的余弦值大小為
6
4
.(9分)


精英家教網(wǎng)
解法二:建立空間直角坐標(biāo)系O-xyz,如圖,
則O(0,0,0),A(0,0,2
3
)
,C(2,0,0),D(0,1,
3
)
,
OA
=(0,0,2
3
)
,
CD
=(-2,1,
3
)
,
cos<
OA
,
CD
>=
OA
CD
|
OA
|•|
CD
|
=
6
2
3
•2
2
=
6
4

∴異面直線AO與CD所成角的余弦值為
6
4
.(9分)
(III)由(I)知,CO⊥平面AOB,
∴∠CDO是CD與平面AOB所成的角,
tanCDO=
OC
OD
=
2
OD
.當(dāng)OD最小時(shí),∠CDO最大,這時(shí),OD⊥AB,垂足為D,OD=
OA•OB
AB
=
3
,tanCDO=
2
3
3

∴CD與平面AOB所成角的最大時(shí)的正切值為
2
3
3
.(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△AOB中,∠OAB=
π6
,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動點(diǎn)D在斜邊AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當(dāng)D為AB的中點(diǎn)時(shí),求異面直線AO與CD所成角的余弦值大。
(Ⅲ)求CD與平面AOB所成角最大時(shí)的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△AOB中,∠OAB=
π6
,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動點(diǎn)D在斜邊AB上.
(1)求證:平面COD⊥平面AOB;
(2)設(shè)CD與平面AOB所成角的最大值為α,求tanα值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△AOB中,∠OAB=
π6
,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C為直二面角.D是AB的中點(diǎn).
(I)求證:平面COD⊥平面AOB;
(II)求異面直線AO與CD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在 Rt△AOB中,∠OAB=
π6
,斜邊AB=4,D是AB的中點(diǎn).現(xiàn)將 Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個(gè)圓錐體,點(diǎn)C為圓錐體底面圓周上的一點(diǎn),且∠BOC=90°.
(1)求異面直線AO與CD所成角的大小;
(2)若某動點(diǎn)在圓錐體側(cè)面上運(yùn)動,試求該動點(diǎn)從點(diǎn)C出發(fā)運(yùn)動到點(diǎn)D所經(jīng)過的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)如圖,在 Rt△AOB中,∠OAB=
π6
,斜邊AB=4,D是AB的中點(diǎn).現(xiàn)將 Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個(gè)圓錐體,點(diǎn)C為圓錐體底面圓周上的一點(diǎn),且∠BOC=90°.
(1)求該圓錐體的體積;
(2)求異面直線AO與CD所成角的大。

查看答案和解析>>

同步練習(xí)冊答案