5.某時段內(nèi)共有100輛汽車經(jīng)過某一雷達(dá)地區(qū),發(fā)現(xiàn)時速(單位:km/h)都在區(qū)間[30,80]內(nèi),其頻率分布直方圖如圖所示,則時速不低于60km/h的汽車數(shù)量為38.

分析 根據(jù)頻率分步直方圖看出時速超過60km/h的汽車的頻率比組距的值,用這個值乘以組距,得到這個范圍中的頻率,用頻率當(dāng)概率,乘以100,得到時速超過60km/h的汽車數(shù)量.

解答 解:根據(jù)頻率分步直方圖可知時速超過60km/h的概率是10×(0.01+0.028)=0.38,
∵共有100輛車,
∴時速超過60km/h的汽車數(shù)量為0.38×100=38(輛)
故答案為:38.

點評 本題考查用樣本的頻率估計總體分布,頻數(shù)、頻率和樣本容量三者之間的關(guān)系是知二求一,這種問題會出現(xiàn)在選擇和填空中.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一個盒子中裝有 1個黑球和2個白球,這3個球除顏色外完全相同,有放回地連續(xù)抽取2次,每次從中任意地取出1個球.計算下列事件的概率:
(1)取出的兩個球都是白球;
(2)第一次取出白球,第二次取出黑球;
(3)取出的兩個球中至少有一個白球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,正方體ABCD-A1B1C1D1中,點P在側(cè)面BCC1B1及其邊界上運動,并且總是保持AP⊥BD1,試證明動點P在線段B1C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)z=$\frac{(1-i)^{2}}{3+i}$的所對應(yīng)的點位于復(fù)平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知A={(x,y)||x|≤1,|y|≤1},B是曲線$y=\sqrt{1-{{({x-1})}^2}}$圍成的封閉區(qū)域,若向區(qū)域A上隨機投一點P,則點P落入?yún)^(qū)域B的概率為( 。
A.$\frac{π}{4}$B.$\frac{π}{16}$C.$\frac{π}{2}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,a,b,c分別為角A,B,C的對邊,且cos(B-C)-2sinBsinC=-$\frac{1}{2}$.
(1)求角A的大;
(2)當(dāng)a=5,b=4時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x3+a是奇函數(shù).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)求證:f(x)是(-∞,+∞)上的增函數(shù);
(Ⅲ)若對任意的θ∈R,不等式f(sin2θ-msinθ)+f(2sinθ-3)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.直線y=x+m與雙曲線2x2-y2=2交于A,B兩點,若以AB為直徑的圓過原點,求m的值及弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x+1)是周期為2的奇函數(shù),當(dāng)x∈[-1,0]時,f(x)=-2x2-2x,則f(-$\frac{3}{2}$)=-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案