14.設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),對(duì)于任意的實(shí)數(shù)x,有f(x)+f(-x)=2x2,當(dāng)x∈(-∞,0]時(shí),f′(x)+1<2x.若f(2+m)-f(-m)≤2m+2,則實(shí)數(shù)m的取值范圍是[-1,+∞).

分析 構(gòu)造函數(shù)g(x)=f(x)-x2+x,由g(-x)+g(x)=0,可得函數(shù)g(x)為奇函數(shù).利用導(dǎo)數(shù)可得函數(shù)g(x)在R上是減函數(shù),結(jié)合函數(shù)的單調(diào)性解不等式即可.

解答 解:∵f′(x)+1<2x,
∴f'(x)-2x+1<0,
令g(x)=f(x)-x2+x
∵g(-x)+g(x)=f(-x)-x2-x+f(x)-x2+x=0,
∴函數(shù)g(x)為奇函數(shù).
∵x∈(-∞,0]時(shí),g′(x)=f′(x)-2x+1<0,
故函數(shù)g(x)在(-∞,0]上是減函數(shù),故函數(shù)g(x)在(0,+∞)上也減函數(shù),
由f(0)=0,可得g(x)在R上是減函數(shù),
∵f(2+m)-f(-m)≤2m+2,等價(jià)于f(2+m)-(2+m)2+m+2≤f(-m)-m2-m,
即g(2+m)≤g(-m),
∴2+m≥-m,解得m≥-1,
故答案為:[-1,+∞).

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性、單調(diào)性的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2+b2x+1,若a是從1,2,3三個(gè)數(shù)中任取一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),則該函數(shù)存在遞減區(qū)域的概率為( 。
A.$\frac{7}{9}$B.$\frac{1}{3}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足sin(2A+B)=2sinA+2cos(A+B)sinA
(Ⅰ)求$\frac{a}$的值;
(Ⅱ)若△ABC的面積為$\frac{{\sqrt{3}}}{2}$,且a=1,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知拋物線y2=2px(p>0),過(guò)其焦點(diǎn)且斜率為2的直線交拋物線于A、B兩點(diǎn),若線段AB的中點(diǎn)的橫坐標(biāo)為3,則該拋物線的準(zhǔn)線方程為x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,P為C上一點(diǎn),若|PF|=4,點(diǎn)P到y(tǒng)軸的距離等于等于3,則點(diǎn)F的坐標(biāo)為( 。
A.(-1,0)B.(1,0)C.(2,0)D.(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若動(dòng)圓的圓心在拋物線y=$\frac{1}{12}$x2上,且與直線y+3=0相切,則此圓恒過(guò)定點(diǎn)( 。
A.(0,2)B.(0,-3)C.(0,3)D.(0,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)奇函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),且在(0,+∞)上f′(x)<x2,若f(1-m)-f(m)≥$\frac{1}{3}[{{{(1-m)}^3}-{m^3}}]$,則實(shí)數(shù)m的取值范圍為( 。
A.$[{-\frac{1}{2},\frac{1}{2}}]$B.$[{\frac{1}{2},+∞})$C.$({-∞,\frac{1}{2}}]$D.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={0,2,3,4,5,7},B={1,2,3,4,6},C={x|x∈A,x∉B},則C的元素的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}首項(xiàng)為2,且對(duì)任意n∈N*,都有$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$,數(shù)列{an}的前10項(xiàng)和為110.
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列;
(Ⅱ)若存在n∈N*,使得an≤(n+1)λ成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案