20.如圖,正三角形ABC的中線AF與中位線DE相交于點(diǎn)G,已知△A′DE是△ADE繞邊DE旋轉(zhuǎn)過程中的一個圖形.現(xiàn)給出下列命題:
①恒有直線BC∥平面A′DE;
②恒有直線DE⊥平面A′FG,
③恒有平面A′FG⊥平面A′DE.
其中正確命題的個數(shù)為( 。
A.0B.1C.2D.3

分析 根據(jù)線面平行的判定定理,由BC∥DE,可得直線BC∥平面A′DEG,故①正確;根據(jù)線面垂直的判定定理,由DE⊥A′G,DE⊥FG,可得直線DE⊥平面A′FG,故②正確;根據(jù)面面垂直的判定定理,由直線DE⊥平面A′FG,DE?平面A′DE,可得恒有平面A′FG⊥平面A′DE,故③正確.

解答 解:對于①:∵BC∥DE,DE?面A'DE,BC?面A'DE,∴BC∥面A'DE.故①正確;
對于②:∵△ABC是正三角形,F(xiàn)為BC的中點(diǎn),∴DE⊥AF,∴DE⊥A'G,DE⊥FG,又∵A'G∩FG=G,
∴DE⊥平面A′FG.故②正確;
對于③:由②可知,DE⊥平面A′FG,又∵DE?平面A′DE,∴平面A′FG⊥平面A′DE.故③正確.
綜上可得,正確命題的個數(shù)為3個
故選:D

點(diǎn)評 本題主要考查了立體幾何中線線、線面、面面的位置關(guān)系,需熟練掌握線面平行的判定定理,線面垂直的判定定理,面面垂直的判定定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)符號[x]表示不超過x的最大整數(shù),如[${\sqrt{3}}$]=1,[-$\sqrt{2}}$]=-2,又實(shí)數(shù)x、y滿足方程組$\left\{{\begin{array}{l}{y=3[x]+2}\\{y=[x]+4}\end{array}}$,則4x-y的取值范圍(  )
A.[-1,3)B.(6,7]C.[6,7)D.[9,13)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=lnx-$\frac{a(x-1)}{x}$(a∈R).
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)已知g(x)=f(x+1),當(dāng)a>0時(shí),若對任意的x≥0,恒有g(shù)(x))≥0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若橢圓經(jīng)過原點(diǎn),且焦點(diǎn)分別為F1(1,0),F(xiàn)2(4,0),則其離心率為( 。
A.$\frac{3}{5}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)是定義在R上的周期為2的函數(shù),當(dāng)x∈[-1,1)時(shí),f(x)=$\left\{\begin{array}{l}{-4{x}^{2}+\frac{10}{9},-1≤x≤0}\\{lo{g}_{3}x,0<x<1}\end{array}\right.$,
則f(f($\frac{3}{2}$))=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)$f(x)=sin({5x+\frac{π}{6}})$,x∈R.的初相為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知AB⊥平面BEC,AB∥CD,AB=BC=4,CD=2,△BEC為等邊三角形,F(xiàn),G分別是AB,CD的中點(diǎn).求證.
(Ⅰ)平面ABE⊥平面ADE;
(Ⅱ)求平面ADE與平面EFG所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若傾斜角為$\frac{π}{6}$的直線過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的左焦點(diǎn)F且交橢圓于A,B兩點(diǎn),若|AF|=3|BF|,則橢圓的離心率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知m,n是空間中兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是( 。
A.若m⊥n,n⊥α,則m∥αB.若α⊥β,m∥α,則m⊥β
C.若m∥α,n∥β,m∥n,則α∥βD.若m⊥β,m∥α,則α⊥β

查看答案和解析>>

同步練習(xí)冊答案