13.已知點(a,b)是平面區(qū)域$\left\{\begin{array}{l}{x+y-2≤0}\\{x≥0}\\{y≥-1}\end{array}\right.$內(nèi)的任意一點,則3a-b的最小值為( 。
A.-3B.-2C.-1D.0

分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
點(a,b)是平面區(qū)域$\left\{\begin{array}{l}{x+y-2≤0}\\{x≥0}\\{y≥-1}\end{array}\right.$內(nèi)的任意一點,
由z=3a-b得b=3a-z,
平移直線y=3x-z由圖象可知當(dāng)直線y=3x-z經(jīng)過點A時,
直線y=3x-z的截距最大,
此時z最小.
由$\left\{\begin{array}{l}{x=0}\\{x+y=2}\end{array}\right.$,解得A(0,2),
此時z=3×0-2=-2,
故選:B.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知線段AM的端點A的坐標(biāo)是(3,0),端點M在圓C:x2+y2=4上.
(1)當(dāng)直線AM與圓C相切時,求直線AM的方程;
(2)若動點P滿足$\overrightarrow{AP}$=2$\overrightarrow{MP}$,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,內(nèi)角A、B、C所對的邊分別是a,b,c,已知A=$\frac{π}{3}$,a2-c2=$\frac{2}{3}$b2
(1)求tanC值;
(2)若△ABC的面積為$\frac{3\sqrt{3}}{4}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個正項等比數(shù)列前n項的和為3,前3n項的和為21,則前2n項的和為( 。
A.18B.12C.9D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法錯誤的是( 。
A.命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”
B.如果命題“¬p”與命題“p∨q”都是真命題,則命題q一定是真命題
C.若命題:?x0∈R,${x_0}^2-{x_0}+1<0$,則¬p:?x∈R,x2-x+1≥0
D.“$sinθ=\frac{1}{2}$”是“$θ=\frac{π}{6}$”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=axlnx+b,g(x)=x2+kx+3,曲線y=f(x)在(1,f(1))處的切線方程為y=x-1.
(1)若f(x)在(b,m)上有最小值,求m的取值范圍;
(2)當(dāng)x∈[$\frac{1}{e}$,e]時,若關(guān)于x的不等式2f(x)+g(x)≥0有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,若sinA:sinB:sinC=3:4:6,則cosB=$\frac{29}{36}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.三角形的面積$s=\frac{1}{2}(a+b+c)r$,a﹑b﹑c 為三邊的邊長,r為三角形內(nèi)切圓半徑,利用類比推理可以得到四面體的體積為(  )
A.V=$\frac{1}{3}$abc
B.$V=\frac{1}{3}sh$
C.$V=\frac{1}{3}(ab+bc+ca)h$
D.$V=\frac{1}{3}({s_1}+{s_2}+{s_3}+{s_4})r$(s1,s2,s3,s4分別為四個面的面積,r為四面體內(nèi)切球半徑)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知a>1,b>1,且a$+b=4\sqrt{2}$,則log2a+log2b的最大值為3.

查看答案和解析>>

同步練習(xí)冊答案