設(shè)P為銳角△ABC的外心(三角形外接圓圓心),
AP
=k(
AB
+
AC
)(k∈R).若cos∠BAC=
2
5
,則k=(  )
A、
5
14
B、
2
14
C、
5
7
D、
3
7
考點:平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:如圖所示,取BC的中點D,連接PD,AD.可得PD⊥BC,
AB
+
AC
=2
AD
.由滿足
AP
=k(
AB
+
AC
)(k∈R),可得
AP
=2K
AD
,A,P,D三點共線,得到AB=AC.因此cos∠BAC=cos∠DPC=
DP
PC
=
DP
PA
=
2
5
.即可得出.
解答: 解:如圖所示,
取BC的中點D,連接PD,AD.
則PD⊥BC,
AB
+
AC
=2
AD
,
∵滿足
AP
=k(
AB
+
AC
)(k∈R
AP
=2K
AD
,
∴A,P,D三點共線,
∴AB=AC.
∴cos∠BAC=cos∠DPC=
DP
PC
=
DP
PA
=
2
5

AP=
5
7
AD

2k=
5
7
,
解得k=
5
14

故選:A.
點評:本題考查了向量共線定理、直角三角形的邊角關(guān)系、三角形外心性質(zhì)、向量平行四邊形法則,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正方體ABCD-A1B1C1D1的棱長為1,則:
(1)A點到CD1的距離為
 
;
(2)A點到BDD1B1的距離為
 

(3)A點到面A1BD的距離為
 
;
(4)AA1與面BB1D1D的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的多面體中,四邊形ABB1A1和ACC1A1都為矩形.AA1=1,AC=
2
,AB=2,設(shè)D,E分別是線段BC,CC1的中點.
(1)若AC⊥BC,證明:直線BC⊥平面ACC1A1;
(2)設(shè)點M為線段AB的中點,證明:直線DE∥平面A1MC;
(3)在(1)條件下,求點D到平面A1B1E1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
xlnx
x+1
和直線l:y=m(x-1).
(1)當(dāng)曲線y=f(x)在點(1,f(1))處的切線與直線l垂直時,求原點O到直線l的距離;
(2)若對于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范圍;
(3)求證:ln
42n+1
n
i=1
i
4i2-1
(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長度為時間T的時間段內(nèi),有兩個長短不等的信號隨機進(jìn)入收音機.長信號持續(xù)時間長度為t1(≤T),短息號持續(xù)時間長度為t2(≤T),則這兩個信號互不干擾的概率是
 
(用t1、t2、T表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個圓錐的側(cè)面展開圖是圓心角為
4
3
π;則圓錐母線與底面所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AD,DD1中點.求證:(1)EF∥平面C1BD;
(2)A1C⊥平面C1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方形ABCD內(nèi)作內(nèi)切圓O,將正方形ABCD、圓O繞對角線AC旋轉(zhuǎn)一周得到的兩個旋轉(zhuǎn)體的體積依次記為V1,V2,則V1:V2=( 。
A、2:
3
B、2
2
:3
C、2:
3
D、
2
:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓錐的母線長為2,側(cè)面展開圖是一個半圓,則此圓錐的表面積為( 。
A、6πB、5πC、3πD、2π

查看答案和解析>>

同步練習(xí)冊答案