15.命題p:實(shí)數(shù)x滿足3a<x<a,其中a<0,q:實(shí)數(shù)x滿足x2-x-6<0,¬p是¬q的必要不充分條件,則a的范圍是[-$\frac{2}{3}$,0).

分析 解關(guān)于q的不等式,根據(jù)若¬p是¬q的必要不充分條件,得到(3a,a)?(-2,3),從而求出a的范圍即可.

解答 解:p:實(shí)數(shù)x滿足3a<x<a,其中a<0,
q:實(shí)數(shù)x滿足x2-x-6<0,解得:-2<x<3,
若¬p是¬q的必要不充分條件,
即q是p的必要不充分條件,
故(3a,a)?(-2,3),
故$\left\{\begin{array}{l}{3a≥-2}\\{a<0}\end{array}\right.$,解得:-$\frac{2}{3}$≤a<0,
故答案為:$[{-\frac{2}{3},0})$.

點(diǎn)評(píng) 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二次函數(shù)f(x)=ax2-bx+2.
(1)若不等式f(x)>0的解集為{x|x>2或x<1},求a和b的值;
(2)若b=2a+1,對(duì)任意a∈[$\frac{1}{2}$,1],f(x)>0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“互聯(lián)網(wǎng)+”時(shí)代,倡導(dǎo)讀書稱為一種生活方式,調(diào)查機(jī)構(gòu)為了解某小區(qū)老、中、青三個(gè)年齡階段的閱讀情況,擬采用分層抽樣的方法從該小區(qū)三個(gè)年齡階段的人群中抽取一個(gè)容量為50的樣本進(jìn)行調(diào)查,已知該小區(qū)有老年人600人,中年人600人,青年人800人,則應(yīng)從青年人抽取的人數(shù)為( 。
A.10B.20C.30D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.sin(-1200°)=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某工廠生產(chǎn)A、B、C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:7,現(xiàn)用分層抽樣的方法抽出一個(gè)樣本,樣本中A型號(hào)的產(chǎn)品共有10件,那么此樣本容量共60件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-1,m),若$\overrightarrow a$⊥$\overrightarrow b$,則m=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=$\left\{\begin{array}{l}{\frac{2x+1}{{x}^{2}},x<-\frac{1}{2}}\\{ln(x+1),x≥-\frac{1}{2}}\end{array}\right.$,g(x)=x2-4x-4,若f(a)+g(b)=0,則b的取值范圍為[-1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)r(x)=alnx,s(x)=b(x-$\frac{1}{x}$),a,b為實(shí)數(shù)且a≠0.
(1)設(shè)函數(shù)f(x)=r(x)+s(x).當(dāng)a=-2時(shí),f(x)在其定義域內(nèi)為單調(diào)增函數(shù),求b的取值范圍;
(2)設(shè)函數(shù)g(x)=r(x)-s(x)+x.當(dāng)b=1時(shí),在區(qū)間(0,e](其中e為自然對(duì)數(shù)的底數(shù))上是否存在實(shí)數(shù)x0,使得g(x0)<0成立,若存在,求實(shí)數(shù)a的取值范圍; 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為$\frac{{2\sqrt{3}}}{3}$,過右焦點(diǎn)F的直線與兩條漸近線分別交于點(diǎn)A、B且與其中一條漸近線垂直,若△OAB的面積為2$\sqrt{3}$,其中O為坐標(biāo)原點(diǎn),則雙曲線的焦距為(  )
A.$\frac{{8\sqrt{3}}}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.$2\sqrt{3}$D.$2\sqrt{15}$

查看答案和解析>>

同步練習(xí)冊(cè)答案