16.已知x,y都是實(shí)數(shù),命題p:x=0;命題q:x2+y2=0,則p是q的( 。
A.充要條件B.必要不充分條件
C.充分不必要條件D.既不充分又不必要條件

分析 求出方程x2+y2=0的解,根據(jù)充分必要條件的定義判斷即可.

解答 解:由x2+y2=0,解得:x=0且y=0,
故命題p:x=0是命題q:x2+y2=0的必要不充分條件,
故選:B.

點(diǎn)評(píng) 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知圓O:x2+y2=r2(r>0),直線l:y=x+1.若圓O上恰有兩個(gè)點(diǎn)到直線的距離是1,則r的取值范圍是1$-\frac{\sqrt{2}}{2}$<r<1+$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知橢圓和雙曲線有共同的焦點(diǎn)F1,F(xiàn)2,P是它們的一個(gè)交點(diǎn),且∠F1PF2=$\frac{π}{3}$,記橢圓和雙曲線的離心率分別為e1,e2,則當(dāng)e1e2取最小值時(shí),e1,e2分別為( 。
A.$\frac{1}{2}$,$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{4}$,$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)中,y的最小值為4的是( 。
A.y=x+$\frac{4}{x}$B.y=$\frac{2(x+3)}{\sqrt{{x}^{2}+2}}$
C.y=sin x+$\frac{4}{sinx}$(0<x<π)D.y=ex+e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.一底面半徑為r,母線長(zhǎng)為3r的圓錐內(nèi)有一內(nèi)接正方體,則該正方體的表面積為$\frac{16{r}^{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{(m+1)^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的離心率為$\frac{{\sqrt{5}}}{2}$,P是該雙曲線上的點(diǎn),P在該雙曲線兩漸近線上的射影分別是A,B,則|PA|•|PB|的值為( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某交警大隊(duì)對(duì)轄區(qū)A路段在連續(xù)10天內(nèi)的n天,對(duì)過(guò)往車(chē)輛駕駛員進(jìn)行血液酒精濃度檢查,查得駕駛員酒駕率f(n)如表;
n56789
f(n)0.060.060.050.040.02
可用線性回歸模型擬合f(n)與n的關(guān)系.
(1)建立f(n)關(guān)于n的回歸方程;
(2)該交警大隊(duì)將在2016年12月11日至20日和21日至30日對(duì)A路段過(guò)往車(chē)輛駕駛員進(jìn)行血液酒精濃度檢查,分別檢查n1,n2天,其中n1,n2都是從8,9,10中隨機(jī)選擇一個(gè),用回歸方程結(jié)果求兩階段查得的駕駛員酒駕率都不超過(guò)0.03的概率.
附注:
參考數(shù)據(jù):$\sum_{n=5}^9{nf(n)=1.51}$,$\sum_{n=5}^9{{n^2}=255}$,$\overline{f(n)}$=0.046,回歸方程$\widehat{f(n)}$=$\widehat$n+$\widehat{a}$中斜率和截距最小乘估計(jì)公式分別為:$\widehatb=\frac{{\sum_{n=5}^9{nf(n)-5\overline{nf(n)}}}}{{\sum_{n=5}^9{{n^2}-5{{\overline n}^2}}}}$,$\widehata=\overline{f(n)}$-$\widehatb\overline n$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f(x)=$\left\{\begin{array}{l}{x+5(x>1)}\\{2{x}^{2}+1(x≤1)}\end{array}\right.$,則f[f(1)]=8.如果f(x)=5,則x=-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.對(duì)任意非零實(shí)數(shù)a、b,若a?b的運(yùn)算原理如圖所示,則(log28)?($\frac{1}{2}$)2=( 。 
A.16B.15C.14D.13

查看答案和解析>>

同步練習(xí)冊(cè)答案