【題目】已知向量 =(cos x,sin x), =(cos x,﹣sin x),且x∈[0, ].求:
(1)及 ;
(2)若f(x)= ﹣2λ 的最小值是﹣ ,求λ的值.
【答案】
(1)
解: =cos2x
=
∵x∈[0, ],∴cosx>0,∴ =2cosx.
(2)
解:f(x)=cos2x﹣4λcosx=2cos2x﹣1﹣4λcosx,設t=cosx,
則∵x∈[0, ],∴t∈[0,1]
即y=f(x)=2t2﹣4λt﹣1=2(t﹣λ)2﹣1﹣2λ2.
①λ<0時,當且僅當t=0時,y取最小值﹣1,這與已知矛盾
②當0≤λ≤1時,當且僅當t=λ時,y取得最小值﹣1﹣2λ2,
由已知得 ,解得λ=
③當λ>1時,當且僅當t=1時,y取得最小值1﹣4λ.
由已知得 ,解得λ= ,這與λ>1相矛盾.
綜上λ= 為所求.
【解析】(1)利用向量的數(shù)量積公式,結合差角的三角函數(shù),角的范圍,即可得出結論;(2)f(x)=cos2x﹣4λcosx=2cos2x﹣1﹣4λcosx,設t=cosx,可得y=f(x)=2t2﹣4λt﹣1=2(t﹣λ)2﹣1﹣2λ2 , 分類討論,利用最小值是﹣ ,即可求λ的值.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知圓和直線.
(Ⅰ)求的參數(shù)方程以及圓上距離直線最遠的點坐標;
(Ⅱ)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,將圓上除點以外所有點繞著逆時針旋轉得到曲線,求曲線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一舉行了一次數(shù)學競賽,為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中的x,y的值;
(2)估計本次競賽學生成績的中位數(shù)和平均分;
(3)在選取的樣本中,從競賽成績在80分以上(含80分)的學生中隨機抽取2名學生,求所抽取的2名學生中至少有一人得分在[90,100]內(nèi)的頻率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1.
(1)求f(x)的最小正周期;
(2)若函數(shù)f(x)的定義域為 ,求單調遞減區(qū)間和值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)要求求值:
(1)用輾轉相除法求123和48的最大公約數(shù).
(2)用更相減損術求80和36的最大公約數(shù).
(3)把89化為二進制數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校一個生物興趣小組對學校的人工湖中養(yǎng)殖的某種魚類進行觀測研究,在飼料充足的前提下,興趣小組對飼養(yǎng)時間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測值,如下表:
xi(月) | 1 | 2 | 3 | 4 | 5 |
yi(千克) | 0.5 | 0.9 | 1.7 | 2.1 | 2.8 |
(參考公式: = , = ﹣ )
(1)在給出的坐標系中,畫出關于x,y兩個相關變量的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關于變量x的線性回歸直線方程 .
(3)預測飼養(yǎng)滿12個月時,這種魚的平均體重(單位:千克)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的離心率為,圓心在軸的正半軸上的圓與雙曲線的漸近線相切,且圓的半徑為2,則以圓的圓心為焦點的拋物線的標準方程為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com