設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上.設(shè)動(dòng)直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓
(1)求的值;
(2)試判斷圓軸的位置關(guān)系;
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過(guò)點(diǎn)?若存在,求出的坐標(biāo);若不存在,說(shuō)明理由.
(1)   (2)見(jiàn)解析    (3)存在

試題分析:
(1)判斷拋物線的焦點(diǎn)位置,得到焦點(diǎn)坐標(biāo),利用中點(diǎn)坐標(biāo)公式得到FA的中點(diǎn)坐標(biāo)帶入拋物線即可求的P的值.
(2)直線與拋物線相切,聯(lián)立直線與拋物線,判別式為0即可得到k,m之間的關(guān)系,可以用k來(lái)替代m,得到P點(diǎn)的坐標(biāo),拋物線準(zhǔn)線與直線的方程可得到Q點(diǎn)的坐標(biāo),利用中點(diǎn)坐標(biāo)公式可得到PQ中點(diǎn)坐標(biāo),通過(guò)討論k的取值范圍得到中點(diǎn)到x軸距離與圓半徑(PQ為直徑)的大小比較即可判斷圓與x軸的位置關(guān)系.
(3)由(2)可以得到PQ的坐標(biāo)(用k表示),根據(jù)拋物線對(duì)稱性知點(diǎn)軸上,設(shè)點(diǎn)坐標(biāo)為,則M點(diǎn)需滿足,即向量?jī)?nèi)積為0,即可得到M點(diǎn)的坐標(biāo),M點(diǎn)的坐標(biāo)如果為常數(shù)(不含k),即存在這樣的定點(diǎn),如若不然,則不存在.
試題解析:
解:(1)利用拋物線的定義得,故線段的中點(diǎn)的坐標(biāo)為,代入方程得,解得。                                2分
(2)由(1)得拋物線的方程為,從而拋物線的準(zhǔn)線方程為        3分
得方程,
由直線與拋物線相切,得                 4分
,從而,即,                   5分
,解得,                     6分
的中點(diǎn)的坐標(biāo)為
圓心軸距離,
 

                  8分
,
∴當(dāng)時(shí),,圓軸相切;
當(dāng)時(shí),,圓軸相交;        9分
(或,以線段為直徑圓的方程為:
 
∴當(dāng)時(shí),,圓軸相切;
當(dāng)時(shí),,圓軸相交;        9分
(3)方法一:假設(shè)平面內(nèi)存在定點(diǎn)滿足條件,由拋物線對(duì)稱性知點(diǎn)軸上,設(shè)點(diǎn)坐標(biāo)為,                          10分
由(2)知,
 。
得,
所以,即           13分
所以平面上存在定點(diǎn),使得圓恒過(guò)點(diǎn).           14分
證法二:由(2)知,,的中點(diǎn)的坐標(biāo)為

所以圓的方程為        11分
整理得             12分
上式對(duì)任意均成立,
當(dāng)且僅當(dāng),解得            13分
所以平面上存在定點(diǎn),使得圓恒過(guò)點(diǎn).            14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的中心為原點(diǎn),長(zhǎng)軸在軸上,離心率,又橢圓上的任一點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若平行于軸的直線與橢圓相交于不同的兩點(diǎn)、,過(guò)、兩點(diǎn)作圓心為的圓,使橢圓上的其余點(diǎn)均在圓外.求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:x2+y2(c是橢圓的半焦距)相離,P是直線AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.

(1)若橢圓C經(jīng)過(guò)兩點(diǎn)、,求橢圓C的方程;
(2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過(guò)一定點(diǎn)E,并求·的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知左焦點(diǎn)為F(-1,0)的橢圓過(guò)點(diǎn)E(1,).過(guò)點(diǎn)P(1,1)分別作斜率為k1,k2的橢圓的動(dòng)弦AB,CD,設(shè)M,N分別為線段AB,CD的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為線段AB的中點(diǎn),求k1;
(3)若k1+k2=1,求證直線MN恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)在橢圓:上,以為圓心的圓與軸相切于橢圓的右焦點(diǎn),且,其中為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)已知點(diǎn),設(shè)是橢圓上的一點(diǎn),過(guò)兩點(diǎn)的直線軸于點(diǎn),若, 求直線的方程;
(3)作直線與橢圓:交于不同的兩點(diǎn),,其中點(diǎn)的坐標(biāo)為,若點(diǎn)是線段垂直平分線上一點(diǎn),且滿足,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn)的雙曲線C的一個(gè)焦點(diǎn)是F1(-3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線l與雙曲線C相交于兩個(gè)不同的點(diǎn)M, N,且線段MA的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線=1的左支上一點(diǎn)M到右焦點(diǎn)F2的距離為18,N是線段MF2的中點(diǎn),O是坐標(biāo)原點(diǎn),則|ON|等于(  )
A.4B.2 C.1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)為F(0,1).

(1)求拋物線C的方程;
(2)過(guò)點(diǎn)F作直線交拋物線C于A,B兩點(diǎn),若直線AO,BO分別交直線l:y=x-2于M,N兩點(diǎn),求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定點(diǎn)A (p為常數(shù),p>0),Bx軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)M使得|AM|=|AB|,且線段BM的中點(diǎn)Gy軸上.

(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)EF為曲線C的一條動(dòng)弦(EF不垂直于x軸),其垂直平分線與x軸交于點(diǎn)T(4,0),當(dāng)p=2時(shí),求|EF|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案