精英家教網 > 高中數學 > 題目詳情
已知點F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點,點E是該雙曲線的右頂點,過點F且垂直于x軸的直線與雙曲線交于A、B兩點,△ABE是直角三角形,則該雙曲線的離心率是( 。
A、3B、2C、12D、13
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:利用雙曲線的對稱性及直角三角形,可得∠AEF=45°,從而|AF|=|EF|,求出|AF|,|EF|得到關于a,b,c的等式,即可求出離心率的值.
解答: 解:∵△ABE是直角三角形,∴∠AEB為直角,
∵雙曲線關于x軸對稱,且直線AB垂直x軸,
∴∠AEF=∠BEF=45°,
∴|AF|=|EF|,
∵F為左焦點,設其坐標為(-c,0),
令x=-c,則
c2
a2
-
y2
b2
=1,
則有y=±
b2
a

∴|AF|=
b2
a
,∴|EF|=a+c,
b2
a
=a+c
∴c2-ac-2a2=0
∴e2-e-2=0
∵e>1,∴e=2
故選B.
點評:本題考查雙曲線的對稱性、考查雙曲線的三參數關系:c2=a2+b2、考查雙曲線的離心率,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設a=(
3
2
0.1,b=lnsin
2012π
3
,c=log 
1
3
1
2
,則a,b,c的大小關系是( 。
A、a>b>c
B、a>c>b
C、b>a>c
D、b>c>a

查看答案和解析>>

科目:高中數學 來源: 題型:

已知全集U=R,集合 A={x|-2≤x≤3},B={x|x>4或x<-1},那么 A∩B=( 。
A、{x|-2≤x<4}
B、{x|-2≤x<-1}
C、{x|x≤3或x≥4}
D、{x|-1≤x≤3}

查看答案和解析>>

科目:高中數學 來源: 題型:

設變量x、y滿足約束條件
x+y-4≥0
x-y-2≤0
x-3y+4≥0
,則z=2x-2y的最小值為( 。
A、
1
2
B、
1
4
C、
1
6
D、
1
8

查看答案和解析>>

科目:高中數學 來源: 題型:

在三棱柱ABC-A1B1C1中,AB⊥AC,A1B⊥平面ABC,且AB=AC=A1B=2.
(Ⅰ)若P為棱B1C1的中點,求出二面角P-AB-A1的平面角的余弦值.
(Ⅱ)證明:平面ABC與平面ACC1A1一定不垂直.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=2cos(x+
π
6
),x∈R的最小正周期為( 。
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中數學 來源: 題型:

根據表格中的數據,可以判定方程ex-x-6=0的一個根所在的區(qū)間為( 。
x-10123
ex0.3712.727.3920.09
x+656789
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,a,b,c為角A,B,C所對的邊,且b(3b-c)cosA=
CA
CB

(1)求cosA的值;
(2)若△ABC的面積為2
2
,并且邊AB上的中線CM的長為
17
2
,求b,c的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的通項公式為an=4n-102,則數列從第
 
項開始值大于零.

查看答案和解析>>

同步練習冊答案