如圖,橢圓的一個焦點(diǎn)F(1,0),點(diǎn)(2,0)在橢圓C上,AB為垂直于x軸的動弦,直線l:x=4與x軸交于點(diǎn)N,直線AF與BN交于點(diǎn)M.
(I)求橢圓C的方程;
(II)求動點(diǎn)M的軌跡方程.

【答案】分析:(Ⅰ)由題設(shè)a=2,c=1,從而b2=a2-c2=3,即可得橢圓C的方程.
(Ⅱ)由題意得F(1,0),N(4,0).設(shè)A(m,n),則B(m,-n)(n≠0),=1,由題意知AF與BN的方程分別為:n(x-1)-(m-1)y=0,n(x-4)-(m-4)y=0.由此入手能夠推出動點(diǎn)M的軌跡方程.
解答:解:
(Ⅰ)由題設(shè)a=2,c=1,從而b2=a2-c2=3,
所以橢圓C前方程為
(Ⅱ)由題意得F(1,0),N(4,0).
設(shè)A(m,n),則B(m,-n)(n≠0),=1.①
AF與BN的方程分別為:n(x-1)-(m-1)y=0,
n(x-4)-(m-4)y=0.
設(shè)M(x,y),則有n(x-1)-(m-1)y=0,②
n(x-4)+(m-4)y=0,③
由②,③得
x=
====1
所以動點(diǎn)M的軌跡方程為:
點(diǎn)評:本題主要考查橢圓的標(biāo)準(zhǔn)方程、圓錐曲線的軌跡問題等基本知識,解答的關(guān)鍵是直線交軌法的應(yīng)用.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年福建卷理)(本小題滿分12分)

   如圖,橢圓的一個焦點(diǎn)是,O為坐標(biāo)原點(diǎn).

  。á瘢┮阎獧E圓短軸的兩個三等分點(diǎn)與一個焦點(diǎn)構(gòu)成正三角 

形,求橢圓的方程;

    (Ⅱ)設(shè)過點(diǎn)F的直線l交橢圓于A、B兩點(diǎn).若直線l繞點(diǎn)F

任意轉(zhuǎn)動,恒有,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年福建卷理)(本小題滿分12分)

   如圖,橢圓的一個焦點(diǎn)是,O為坐標(biāo)原點(diǎn).

   (Ⅰ)已知橢圓短軸的兩個三等分點(diǎn)與一個焦點(diǎn)構(gòu)成正三角 

形,求橢圓的方程;

    (Ⅱ)設(shè)過點(diǎn)F的直線l交橢圓于A、B兩點(diǎn).若直線l繞點(diǎn)F

任意轉(zhuǎn)動,恒有,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年福建卷文)(本小題滿分14分)

如圖,橢圓的一個焦點(diǎn)是,且過點(diǎn)。

(Ⅰ)求橢圓C的方程;

(Ⅱ)若AB為垂直于x軸的動弦,直線x軸交于點(diǎn)N,直線AFBN交于點(diǎn)M。

    ()求證:點(diǎn)M恒在橢圓C上;

()求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

   如圖,橢圓的一個焦點(diǎn)是F(1,0),O為坐標(biāo)原點(diǎn)。

              

(Ⅰ)已知橢圓短軸的兩個三等分點(diǎn)與一個焦點(diǎn)構(gòu)成正三角形,求橢圓的方程;

(Ⅱ)設(shè)過點(diǎn)F的直線l交橢圓于A、B兩點(diǎn),若直線l繞點(diǎn)F任意轉(zhuǎn)動,值有,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)(福建卷) 題型:選擇題

(本小題滿分12分)

   如圖,橢圓的一個焦點(diǎn)是F(1,0),O為坐標(biāo)原點(diǎn)。

              

(Ⅰ)已知橢圓短軸的兩個三等分點(diǎn)與一個焦點(diǎn)構(gòu)成正三角形,求橢圓的方程;

(Ⅱ)設(shè)過點(diǎn)F的直線l交橢圓于AB兩點(diǎn),若直線l繞點(diǎn)F任意轉(zhuǎn)動,值有,求a的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊答案