已知如下兩個(gè)命題:p:函數(shù)f(x)=
2x-3
kx2+4kx+5
的定義域?yàn)镽;q:關(guān)于x的不等式|x+1|-|x+2|<k恒成立.
若命題“p或q”與命題“p且q”一真一假,求實(shí)數(shù)k的取值范圍.
若命題p為真,則有k=0或
k≠0
△=16k2-20k<0
,解得0≤k<
5
4

若命題q為真,∵|x+1|-|x+2|的最大值為1,∴k>1
因命題“p或q”與命題“p且q”一真一假,所以必有命題“p或q”為真,
命題“p且q”為假,即命題p,命題q一真一假,
故當(dāng)命題p為真,命題q為假時(shí),有0≤k≤1,
當(dāng)命題p為假,命題q為真時(shí),有k≥
5
4

綜上可得,實(shí)數(shù)k的取值范圍為[0,1]∪[
5
4
,+∞)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、已知m<9,給出如下兩個(gè)命題:
p:二次函數(shù)y=x2+(m-7)x+1在定義域R上不存在零點(diǎn);
q:三次函數(shù)y=-x3+3x在開區(qū)間(m-9,9-m)上存在最大值與最小值.
若命題“p或q”為真命題,命題“p且q”為假命題,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如下兩個(gè)命題:p:函數(shù)f(x)=
2x-3kx2+4kx+5
的定義域?yàn)镽;q:關(guān)于x的不等式|x+1|-|x+2|<k恒成立.
若命題“p或q”與命題“p且q”一真一假,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知m<9,給出如下兩個(gè)命題:
p:二次函數(shù)y=x2+(m-7)x+1在定義域R上不存在零點(diǎn);
q:三次函數(shù)y=-x3+3x在開區(qū)間(m-9,9-m)上存在最大值與最小值.
若命題“p或q”為真命題,命題“p且q”為假命題,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省海安縣高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知m<9,給出如下兩個(gè)命題:
p:二次函數(shù)y=x2+(m-7)x+1在定義域R上不存在零點(diǎn);
q:三次函數(shù)y=-x3+3x在開區(qū)間(m-9,9-m)上存在最大值與最小值.
若命題“p或q”為真命題,命題“p且q”為假命題,求實(shí)數(shù)m的范圍.

查看答案和解析>>

同步練習(xí)冊答案