(本題10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中.曲線的極坐標(biāo)方程為.
(1)分別把曲線化成普通方程和直角坐標(biāo)方程;并說(shuō)明它們分別表示什么曲線.
(2)在曲線上求一點(diǎn),使點(diǎn)到曲線的距離最小,并求出最小距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系下,設(shè)圓C:,試求:
(1)圓心的直角坐標(biāo)表示
(2)在直角坐標(biāo)系中,設(shè)曲線C經(jīng)過(guò)變換得到曲線,則曲線的軌跡是什么圖形?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系上取兩個(gè)定點(diǎn),再取兩個(gè)動(dòng)點(diǎn) ,且.
(Ⅰ)求直線與交點(diǎn)的軌跡的方程;
(Ⅱ)已知點(diǎn)()是軌跡上的定點(diǎn),是軌跡上的兩個(gè)動(dòng)點(diǎn),如果直線的斜率與直線的斜率滿足,試探究直線的斜率是否是定值?若是定值,求出這個(gè)定值,若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分10分) 在直角坐標(biāo)系中,以極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為分別為與軸,軸的交點(diǎn)
(1)寫(xiě)出的直角坐標(biāo)方程,并求出的極坐標(biāo)
(2)設(shè)的中點(diǎn)為,求直線的極坐標(biāo)方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本大題分兩小題,每小題7分,共14分)
(1)極坐標(biāo)系中,A為曲線上的動(dòng)點(diǎn),B為直線的動(dòng)點(diǎn),求距離的最小值。
(2)求函數(shù)y=的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,曲線與曲線(參數(shù))交于A、B兩點(diǎn),
(1)求證:;
(2)求的外接圓的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知曲線C的極坐標(biāo)方程是=1,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù))。
(1)寫(xiě)出直線與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過(guò)伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知A(2,1),B(3,2),C(-1,4),則△ABC是( )
A.直角三角形 |
B.銳角三角形 |
C.鈍角三角形 |
D.等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖所示,已知⊙O的直徑與弦AC的夾角為30°,過(guò)C點(diǎn)的切線PC與AB的延長(zhǎng)線交于P,PC=5,則⊙O的半徑為
A. | B. |
C.10 | D.5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com