分析 根據(jù)對稱函數(shù)的定義,結(jié)合h(x)≥g(x)恒成立,轉(zhuǎn)化為點到直線的距離d≥1,利用點到直線的距離公式進(jìn)行求解即可.
解答 解:解:∵x∈D,點(x,g(x)) 與點(x,h(x))都關(guān)于點(x,f(x))對稱,∴g(x)+h(x)=2f(x),∵h(yuǎn)(x)≥g(x)恒成立,
∴2f(x)=g(x)+h(x)≥g(x)+g(x)=2g(x),即f(x)≥g(x)恒成立,
作出g(x)和f(x)的圖象,
若h(x)≥g(x)恒成立,
則h(x)在直線f(x)的上方,
即g(x)在直線f(x)的下方,
則直線f(x)的截距b>0,且原點到直線y=2x+b的距離d≥1,
d=$\frac{|b|}{\sqrt{{2}^{2}+1}}=\frac{|b|}{\sqrt{5}}≥1$⇒b≥$\sqrt{5}$或b$≤-\sqrt{5}$(舍去)
即實數(shù)b的取值范圍是[$\sqrt{5}$,+∞),
點評 本題主要考查不等式恒成立問題,根據(jù)對稱函數(shù)的定義轉(zhuǎn)化為點到直線的距離關(guān)系,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\frac{1}{2},1]$ | B. | $(\frac{1}{2},1]$ | C. | $(\frac{1}{2},{log_3}2]$ | D. | $[\frac{1}{2},{log_3}2]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 99 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com