【題目】已知函數(shù),命題:實數(shù)滿足不等式;命題:實數(shù)滿足不等式,若是的充分不必要條件,則實數(shù)的取值范圍是__________.
【答案】
【解析】
根據(jù)條件先判斷函數(shù)f(x)為偶函數(shù),同時也是增函數(shù),結(jié)合函數(shù)的性質(zhì)分別求出命題p和q的等價條件,結(jié)合充分條件和必要條件的定義進行求解即可.
f(﹣x)=ln(1+|﹣x|)﹣=ln(1+|x|)﹣=f(x),則f(x)為偶函數(shù),
當(dāng)x≥0時,f(x)=ln(1+x)﹣,為增函數(shù),
不等式不等式f(x+1)>f(2x﹣1)等價為不等式f(|x+1|)>f(|2x﹣1|),
即|x+1|>|2x﹣1|,
即(x+1)2>(2x﹣1)2,
得x2﹣2x<0,
得0<x<2,
即p:0<x<2,
不等式x2﹣(m+1)x+m≤0,
則(x﹣1)(x﹣m)≤0,
∵¬p是¬q的充分不必要條件,
∴q是p的充分不必要條件,
若m=1,則不等式的解為x=1,此時q:x=1,滿足條件.
若m>1,則不等式的解為1≤x≤m,
若滿足條件,則1<m<2,
若m<1,則不等式的解為m≤x≤1,
若滿足條件,則0<m<1,
綜上0<m<2,
即實數(shù)m的取值范圍是(0,2),
故答案為:(0,2)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系.若曲線的極坐標(biāo)方程為, 點的極坐標(biāo)為,在平面直角坐標(biāo)系中,直線經(jīng)過點,斜率為.
(1)寫出曲線的直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)直線與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l極坐標(biāo)方程ρcosθ﹣ρsinθ+3=0,圓M的極坐標(biāo)方程為ρ=4sinθ.以極點為原點,極軸為x軸建立直角坐標(biāo)系(1)寫出直線l與圓M的直角標(biāo)方程;
(2)設(shè)直線l與圓M交于A、B兩點,求AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將7名應(yīng)屆師范大學(xué)畢業(yè)生分配到3所中學(xué)任教.
(1)4個人分到甲學(xué)校,2個人分到乙學(xué)校,1個人分到丙學(xué)校,有多少種不同的分配方案?
(2)一所學(xué)校去4個人,另一所學(xué)校去2個人,剩下的一個學(xué)校去1個人,有多少種不同的分配方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD= ,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中點.
(1)求證:AE∥平面PBC;
(2)若直線AE與直線BC所成角等于 ,求二面角D﹣PB﹣A平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓上動點到兩個焦點的距離之和為4,且到右焦點距離的最大值為.
(1)求橢圓的方程;
(2)設(shè)點為橢圓的上頂點,若直線與橢圓交于兩點(不是上下頂點).試問:直線是否經(jīng)過某一定點,若是,求出該定點的坐標(biāo);若不是,請說明理由;
(3)在(2)的條件下,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知函數(shù)(),其中.
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)若函數(shù)僅在處有極值,求的取值范圍;
(3)若對于任意的,不等式在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2016年“猴”年的到來,某電視臺舉辦猜獎活動,參與者需先后回答兩道選擇題,問題A有三個選項,問題B有四個選項,每題只有一個選項是正確的,正確回答問題A可獲獎金1千元,正確回答問題B可獲獎金2千元.活動規(guī)定:參與者可任意選擇回答問題的順序,如果第一個問題回答正確,則繼續(xù)答題,否則該參與者猜獎活動終止.假設(shè)某參與者在回答問題前,選擇每道題的每個選項的機會是等可能的.
(Ⅰ)如果該參與者先回答問題A,求其恰好獲得獎金1千元的概率;
(Ⅱ)試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com