16.復(fù)數(shù)z滿足zi-z=4+2i的復(fù)數(shù)z為( 。
A.3-iB.1+3iC.3+iD.-1-3i

分析 利用復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:∵復(fù)數(shù)z滿足zi-z=4+2i,
∴-z(1-i)(1+i)=(4+2i)(1+i),∴-2z=2(1+3i),∴z=-1-3i,
故選:D.

點評 本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)p:實數(shù)x滿足不等式x2-4ax+3a2<0(a<0),q:實數(shù)x滿足不等式x2-x-6≤0,已知¬p是¬q的必要非充分條件,則實數(shù)a的取值范圍是$[-\frac{2}{3},0)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列函數(shù)的定義域
(1)f(x)=$\sqrt{2x+1}$+$\sqrt{3-4x}$;
(2)y=$\frac{\sqrt{1-x}}{{x}^{2}-2x-3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f($\frac{x-1}{x+1}$)=-x-1.
(1)求f(x);
(2)求f(x)在區(qū)間[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,且$cosBcosC-sinBsinC=-\frac{1}{2}$.
(1)求A的值.            
(2)若a=2,△ABC的面積為$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$f(x)=\frac{|x|+a}(a<0,b>0)$的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.
下列命題正確的是③⑤.
①“囧函數(shù)”的值域為R;             
②“囧函數(shù)”在(0,+∞)上單調(diào)遞增;
③“囧函數(shù)”的圖象關(guān)于y軸對稱;      
④“囧函數(shù)”有兩個零點;
⑤“囧函數(shù)”的圖象與直線y=kx+m(k≠0)至少有一個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知點P為橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上的動點,EF為圓N:x2+(y-1)2=1的任一直徑,求$\overrightarrow{PE}•\overrightarrow{PF}$最大值和最小值是( 。
A.16,12-4$\sqrt{3}$B.17,13-4$\sqrt{3}$C.19,12-4$\sqrt{3}$D.20,13-4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題正確的是( 。
A.若非零向量$\overrightarrow{a}$與$\overrightarrow$的方向相同或相反,則$\overrightarrow{a}$+$\overrightarrow$的方向必與$\overrightarrow{a}$,$\overrightarrow$之一方向相同
B.在△ABC中,必有$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$
C.若$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$,則A,B,C為一個三角形的三個頂點
D.若$\overrightarrow{a}$與$\overrightarrow$為非零向量,則|$\overrightarrow{a}$+$\overrightarrow$|與|$\overrightarrow{a}$|+|$\overrightarrow$|一定相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.點P在△ABC所在平面上,若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{AB}$,且S△ABC=12,則△PAB的面積為( 。
A.4B.6C.8D.16

查看答案和解析>>

同步練習(xí)冊答案