命題:?x∈[0,
π
3
]
,使3cos2
x
2
+
3
sin
x
2
cos
x
2
<a+
3
2
成立,則實(shí)數(shù)a的取值范圍是( 。
分析:利用兩角和與差的正弦將3cos2
x
2
+
3
sin
x
2
cos
x
2
<a+
3
2
轉(zhuǎn)化為a>
3
sin(x+
π
3
),從而可求得答案.
解答:解:∵3cos2
x
2
+
3
sin
x
2
cos
x
2
<a+
3
2
,
∴3×
1+cosx
2
+
3
2
sinx<a+
3
2
,
∴a>
3
2
sinx+
3
2
cosx=
3
sin(x+
π
3
),
∵x∈[0,
π
3
],
π
3
≤x+
π
3
3
,
3
2
≤sin(x+
π
3
)≤1,
3
2
3
sin(x+
π
3
)≤
3
,
∴a>
3

故選D.
點(diǎn)評(píng):本題考查兩角和與差的正弦函數(shù),考查二倍角的正弦與余弦,考查恒成立問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題:“?x∈(0,
π2
),sinx<x
”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、有下列命題:①x=0是函數(shù)y=x3的極值點(diǎn);
②三次函數(shù)f(x)=ax3+bx2+cx+d有極值點(diǎn)的充要條件是b2-3ac>0;
③奇函數(shù)f(x)=mx3+(m-1)x2+48(m-2)x+n在區(qū)間(-4,4)上是單調(diào)減函數(shù).
其中假命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列命題:
①x=0是函數(shù)y=x3的極值點(diǎn);
②三次函數(shù)f(x)=ax3+bx2+cx+d有極值點(diǎn)的充要條件是b2-3ac>0;
③奇函數(shù)f(x)=mx3+(m-1)x2+48(m-2)x+n在區(qū)間(-4,4)上是單調(diào)減函數(shù);
④若函數(shù)g(x)=(x-1)(x-2)…(x-2009)(x-2010),則g′(2010)=2009.
其中真命題的個(gè)數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都二模)對(duì)于定義在區(qū)間D上的函數(shù)f(x),若滿足對(duì)?x1,x2∈D,且x1<x2時(shí)都有 f(x1)≥f(x2),則稱函數(shù)f(x)為區(qū)間D上的“非增函數(shù)”.若f(x)為區(qū)間[0,1]上的“非增函數(shù)”且f(0)=l,f(x)+f(l-x)=l,又當(dāng)x∈[0,
1
4
]
時(shí),f(x)≤-2x+1恒成立.有下列命題:
①?x∈[0,1],f(x)≥0;
②當(dāng)x1,x2∈[0,1]且x1≠x2,時(shí),f(x1)≠f(x)
?x∈[
1
4
,
3
4
]
時(shí),都有f(x)=
1
2

④函數(shù)f(x)的圖象關(guān)于點(diǎn)(
1
2
,
1
2
)
對(duì)稱
其中你認(rèn)為正確的所有命題的序號(hào)為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都二模)對(duì)于定義在區(qū)間D上的函數(shù)f(x),若滿足對(duì)?x1,x2∈D,且x1<x2時(shí)都有 f(x1)≥f(x2),則稱函數(shù)f(x)為區(qū)間D上的“非增函數(shù)”.若f(x)為區(qū)間[0,1]上的“非增函數(shù)”且f(0)=l,f(x)+f(l-x)=l,又當(dāng)x∈[0,
1
4
]時(shí),f(x)≤-2x+1恒成立.有下列命題:
①?x∈[0,1],f(x)≥0;
②當(dāng)x1,x2∈[0,1]且x1≠x2,時(shí),f(x1)≠f(x)
③f(
1
8
)+f(
5
11
)+f(
7
13
)+f(
7
8
)=2;
④當(dāng)x∈[0,
1
4
]時(shí),f(f(x))≤f(x).
其中你認(rèn)為正確的所有命題的序號(hào)為
①③④
①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案