【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2﹣an , n=1,2,3,….
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an , 求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)cn=n(3﹣bn),求數(shù)列{cn}的前n項(xiàng)和為Tn .
【答案】
(1)解:因?yàn)閚=1時(shí),a1+S1=a1+a1=2,所以a1=1.
因?yàn)镾n=2﹣an,即an+Sn=2,所以an+1+Sn+1=2.
兩式相減:an+1﹣an+Sn+1﹣Sn=0,即an+1﹣an+an+1=0,故有2an+1=an.
因?yàn)閍n≠0,所以 = ( n∈N*).
所以數(shù)列{an}是首項(xiàng)a1=1,公比為 的等比數(shù)列,an= ( n∈N*)
(2)解:因?yàn)閎n+1=bn+an( n=1,2,3,…),所以bn+1﹣bn= .從而有b2﹣b1=1,b3﹣b2= ,b4﹣b3= ,…,bn﹣bn﹣1= ( n=2,3,…).
將這n﹣1個(gè)等式相加,得bn﹣b1=1+ + +…+ = =2﹣ .
又因?yàn)閎1=1,所以bn=3﹣ ( n=1,2,3,…)
(3)解:因?yàn)閏n=n (3﹣bn)= ,
所以Tn= . ①
= . ②
①﹣②,得 = span> ﹣ .
故Tn= ﹣ =8﹣ ﹣ =8﹣ ( n=1,2,3,…)
【解析】(1)利用數(shù)列中an與 Sn關(guān)系 解決.(2)結(jié)合(1)所求得出bn+1﹣bn= .利用累加法求bn(3)由上求出cn=n (3﹣bn)= ,利用錯(cuò)位相消法求和即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求證:AB1⊥BC1;
(2)求二面角B﹣AB1﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的奇函數(shù)f(x),滿足f(1)=0,且在(0,+∞)上單調(diào)遞增,則xf(x)>0的解集為( )
A.{x|x<﹣1或x>1}
B.{x|0<x<1或﹣1<x<0}
C.{x|0<x<1或x<﹣1}
D.{x|﹣1<x<0或x>1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax(a>0且a≠1)的圖象經(jīng)過(guò)點(diǎn)(2, ).
(1)比較f(2)與f(b2+2)的大;
(2)求函數(shù)g(x)=a (x≥0)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線y2=2x的焦點(diǎn)F作直線交拋物線于A,B兩點(diǎn),若|AB|= ,|AF|<|BF|,則|AF|為( )
A.1
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下幾個(gè)命題中真命題的序號(hào)為 .
①在空間中,m、n是兩條不重合的直線,α、β是兩個(gè)不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
②相關(guān)系數(shù)r的絕對(duì)值越接近于1,兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng);
③用秦九昭算法求多項(xiàng)式f(x)=208+9x2+6x4+x6在x=﹣4時(shí),v2的值為22;
④過(guò)拋物線y2=4x的焦點(diǎn)作直線與拋物線相交于A、B兩點(diǎn),則使它們的橫坐標(biāo)之和等于4的直線有且只有兩條.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是從成都某中學(xué)參加高三體育考試的學(xué)生中抽出的40名學(xué)生體育成績(jī)(均為整數(shù))的頻率分布直方圖,該直方圖恰好缺少了成績(jī)?cè)趨^(qū)間[70,80)內(nèi)的圖形,根據(jù)圖形的信息,回答下列問題:
(1)求成績(jī)?cè)趨^(qū)間[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖,并估計(jì)這次考試的及格率(60分及以上為及格);
(2)從成績(jī)?cè)赱80,100]內(nèi)的學(xué)生中選出三人,記在90分以上(含90分)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線上有一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作直線垂直于軸,動(dòng)點(diǎn)在上,且滿足(為坐標(biāo)原點(diǎn)),記點(diǎn)的軌跡為.
(I)求曲線的方程;
(II)若直線是曲線的一條切線,當(dāng)點(diǎn)到直線的距離最短時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣在市的普及情況, 市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)
經(jīng)常使用網(wǎng)絡(luò)外賣 | 偶爾或不用網(wǎng)絡(luò)外賣 | 合計(jì) | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合計(jì) | 110 | 90 | 200 |
(1)根據(jù)表中數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?
(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再?gòu)倪@5人中隨機(jī)選出3人贈(zèng)送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;
②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com