精英家教網 > 高中數學 > 題目詳情

【題目】已知a,b,c分別是△ABC內角A,B,C的對邊,sin2B=2sinAsinC.
(Ⅰ)若a=b,求cosB;
(Ⅱ)設B=90°,且a= , 求△ABC的面積.

【答案】解:(I)∵sin2B=2sinAsinC,
由正弦定理可得:>0,
代入可得(bk)2=2akck,
∴b2=2ac,
∵a=b,∴a=2c,
由余弦定理可得:cosB===
(II)由(I)可得:b2=2ac,
∵B=90°,且a=,
∴a2+c2=2ac,解得a=c=
∴S△ABC=ac=1.
【解析】(I)sin2B=2sinAsinC,由正弦定理可得:b2=2ac,再利用余弦定理即可得出.
(II)利用(I)及勾股定理可得c,再利用三角形面積計算公式即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x1﹣2≤6}.
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖F1、F2是橢圓C1+y2=1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若四邊形AF1BF2為矩形,則C2的離心率是
( 。

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知AB為半圓O的直徑,且AB=4,C為半圓上一點,過點C作半圓的切線CD,過A點作AD⊥CD于D,交半圓于點E,DE=1.

(Ⅰ)證明:AC平分∠BAD;

(Ⅱ)求BC的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= (a>0且a≠1)是定義域為R的奇函數.

(Ⅰ)若f(1)>0,試求不等式f(x2+2x)+f(x-4)>0的解集;

(Ⅱ)若f(1)= ,且g(x)=a2xa-2x-4f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的離心率e= ,直線l過A(a,0),B(0,﹣b)兩點,原點O到直線l的距離是
(1)求雙曲線的方程;
(2)過點B作直線m交雙曲線于M、N兩點,若 =﹣23,求直線m的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】把函數y=cos2x+ sin2x的圖象向左平移m(其中m>0)個單位,所得圖象關于y軸對稱,則m的最小值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對任意一個確定的二面角α﹣l﹣β,a和b是空間的兩條異面直線,在下面給出的四個條件中,能使a和b所成的角也確定的是(
A.a∥a且b∥β
B.a∥a且b⊥β
C.aα且b⊥β
D.a⊥α且b⊥β

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是2017年第一季度五省情況圖,則下列陳述正確的是( )

①2017年第一季度 總量和增速均居同一位的省只有1個;

②與去年同期相比,2017年第一季度五個省的總量均實現了增長;

③去年同期的總量前三位是江蘇、山東、浙江;

④2016年同期浙江的總量也是第三位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

同步練習冊答案