8.若α∈(0,π),且$\frac{1}{2}$cos2α=sin($\frac{π}{4}$+α),則sin2α的值為-1.

分析 由條件利用兩角和的正弦公式、二倍角公式求得,cosα-sinα,或 cosα+sinα的值,從而求得sin2α的值.

解答 解:∵α∈(0,π),且$\frac{1}{2}$cos2α=sin($\frac{π}{4}$+α),∴cos2α=2sin($\frac{π}{4}$+α),
∴(cosα+sinα)•(cosα-sinα)=$\sqrt{2}$(cosα+sinα),
∴cosα+sinα=0,或cosα-sinα=$\sqrt{2}$(不合題意,舍去),
∴α=$\frac{3π}{4}$,∴2α=$\frac{3π}{2}$,∴sin2α=sin$\frac{3π}{2}$=-1,
故答案為:-1.

點評 本題主要考查兩角和差的正弦、余弦公式的應(yīng)用,二倍角公式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一組數(shù)據(jù)3,4,5,s,t的平均數(shù)是4,這組數(shù)據(jù)的中位數(shù)是m,對于任意實數(shù)s,t,從3,4,5,s,t,m這組數(shù)據(jù)中任取一個,取到數(shù)字4的概率的最大值為(  )
A.$\frac{2}{3}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)求證:$\sqrt{6}+\sqrt{10}>2\sqrt{3}+2$.
(2)已知a,b,c為任意實數(shù),求證:a2+b2+c2≥ab+bc+ac.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.祖暅(公元前5-6世紀),祖沖之之子,是我國齊梁時代的數(shù)學(xué)家.他提出了一條原理:“冪勢既同,則積不容異.”這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等.該原理在西方直到十七世紀才由意大利數(shù)學(xué)家卡瓦列利發(fā)現(xiàn),比祖暅晚一千一百多年.橢球體是橢圓繞其軸旋轉(zhuǎn)所成的旋轉(zhuǎn)體.如圖將底面直徑皆為2b,高皆為a的橢半球體及已被挖去了圓錐體的圓柱體放置于同一平面β上.以平行于平面β的平面于距平面β任意高d處可橫截得到S及S環(huán)兩截面,可以證明S=S環(huán)知總成立.據(jù)此,短軸長為4cm,長軸為6cm的橢球體的體積是16πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.從0,1,2,3中任取2個不同的數(shù),則取出2個數(shù)的和不小于3的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個三位自然數(shù)百位,十位,個位上的數(shù)字依次為a,b,c,當且僅當a>b,b<c時稱為“凹數(shù)”(如213),若a,b,c∈{1,2,3,4},且a,b,c互不相同,則這個三位數(shù)為“凹數(shù)”的有( 。﹤.
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)$y=3\sqrt{2x-1}+4\sqrt{5-2x}$的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.半徑為3cm的圓中,$\frac{π}{7}$的圓心角所對的弧長為(  )
A.$\frac{3π}{7}$cmB.$\frac{π}{21}$cmC.$\frac{3}{7}$cmD.$\frac{9π}{7}$cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高二理下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

,若,則的值等于( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案