【題目】某學(xué)校要召開學(xué)生代表大會,規(guī)定各班每10人推選一名代表,當(dāng)各班人數(shù)除以10的余數(shù)大于6時再增選一名代表.那么,各班可推選代表人數(shù)y與該班人數(shù)x之間的函數(shù)關(guān)系用取整函數(shù)y=[x]([x]表示不大于x的最大整數(shù))可以表示為(  )

A. y B. y C. y D. y

【答案】B

【解析】

根據(jù)規(guī)定10推選一名代表,當(dāng)各班人數(shù)除以10的余數(shù)大于6時再增加一名代表,即余數(shù)分別為7,8,9時可以增選一名代表,也就是x要進(jìn)一位,所以最小應(yīng)該加3.進(jìn)而得到解析式.

根據(jù)規(guī)定10推選一名代表,當(dāng)各班人數(shù)除以10的余數(shù)大于6時再增加一名代表,即余數(shù)分別為7,8,9時可以增選一名代表,也就是x要進(jìn)一位,所以最小應(yīng)該加3.因此利用取整函數(shù)可表示為y=[]

也可以用特殊取值法

若x=56,y=5,排除C、D,若x=57,y=6,排除A;

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱, 平面 , , 的中點(diǎn) 是等腰三角形, 的中點(diǎn), 上一點(diǎn).

)若,證明 平面

求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為辦好省運(yùn)會,計劃招募各類志愿者1.2萬人.為做好宣傳工作,招募小組對15-40歲的人群隨機(jī)抽取了100人,回答省運(yùn)會的有關(guān)知識,根據(jù)統(tǒng)計結(jié)果制作了如下的統(tǒng)計圖表1、表2

I)分別求出表2中的a、x的值;

II)若在第23、4組回答完全正確的人中,用分層抽樣的方法抽取6人,則各組應(yīng)分別抽取多少人?

III)在(II)的前提下,招募小組決定在所抽取的6人中,隨機(jī)抽取2人頒發(fā)幸運(yùn)獎,求獲獎的2人均來自第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>,對任意都有,且當(dāng)時, .

(1)試判斷的單調(diào)性,并證明;

(2)

①求的值;

②求實(shí)數(shù)的取值范圍,使得方程有負(fù)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列結(jié)論:

(1)若對任意,且,都有,則為R上的減函數(shù);

(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);

(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

(4)t為常數(shù),若對任意的,都有關(guān)于對稱。

其中所有正確的結(jié)論序號為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是拋物線上兩點(diǎn),且兩點(diǎn)橫坐標(biāo)之和為3.

(1)求直線的斜率;

(2)若直線,直線與拋物線相切于點(diǎn),且,求方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時, f(x)=-x+1

(1)求f(0),f(2);

(2)求函數(shù)f(x)的解析式;

(3)若f(a-1)<3,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的k值為(

A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0,a≠1)在區(qū)間[﹣1,2]上的最大值為8,最小值為m.若函數(shù)g(x)=(3﹣10m) 是單調(diào)增函數(shù),則a=

查看答案和解析>>

同步練習(xí)冊答案