已知函數(shù)f(x)=sin(2x+
π
4
)(x∈R)的最小正周期為π,為了得到函數(shù)g(x)=sin2x的圖象,只要將y=f(x)的圖象( 。
A、向左平移
π
8
個(gè)單位長(zhǎng)度
B、向右平移
π
8
個(gè)單位長(zhǎng)度
C、向左平移
π
4
個(gè)單位長(zhǎng)度
D、向右平移
π
4
個(gè)單位長(zhǎng)度
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的求值
分析:利用已知條件化簡(jiǎn)函數(shù)的解析式,然后利用左加右減的原則,確定平移的方向與單位.
解答: 解:因?yàn)楹瘮?shù)f(x)=sin(2x+
π
4
),
函數(shù)的解析式化為:f(x)=sin[2(x+
π
8
)],
為了得到函數(shù)g(x)=sin2x的圖象,只要將函數(shù)f(x)的圖象向右平移
π
8
個(gè)單位長(zhǎng)度即可.
故選B.
點(diǎn)評(píng):本題考查三角函數(shù)的圖象的變換,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
x
-x的圖象關(guān)于(  )對(duì)稱.
A、y軸B、x軸
C、坐標(biāo)原點(diǎn)D、直線y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為a,b,c,且(2b-
3
c)cosA=
3
acosC.
(1)求角A的大;
(2)若a=1,cosB=
4
5
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由曲線y=
x
與y=x3所圍成的封閉圖形的面積是( 。
A、
11
12
B、
5
12
C、
2
3
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在數(shù)列{an}中,a1=-1,a2=2,an+1+an-1=2(an+1)(n≥2,n∈N+).
(1)求證:數(shù)列{an-an-1}是等差數(shù)列;
(2)若an≥100,求正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(ax3+
1
x
)7
的展開(kāi)式中,常數(shù)項(xiàng)為14,則a=
 
(用數(shù)字填寫(xiě)答案).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)下列命題中,正確的命題序號(hào)為
 

①方程組
2x+y=0
x-y=3
的解集為{1,2},
②集合C={
6
3-x
∈z|x∈N*}
={-6,-3,-2,-1,3,6}
③f(x)=
x-3
+
2-x
是函數(shù)
④f(x)=ax2+bx+3a+b是偶函數(shù),定義域?yàn)閇a-1,2a]則f(0)=1
⑤集合A={1,2,3,4},B={3,4,5,6}滿足S⊆A且S∩B≠∅的集合S的個(gè)數(shù)為12個(gè)
⑥函數(shù)y=
2
x
在定義域內(nèi)是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示
(1)求函數(shù)f(x)的最小正周期及解析
(2)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)等比數(shù)列{an}中,a2•a5•a13•a16=256,a7=2則數(shù)列{an}的公比為( 。
A、
2
B、2
C、±2
D、±
2

查看答案和解析>>

同步練習(xí)冊(cè)答案