已知函數(shù)f(x)=ax2-2
4+2b-b2
•x
,g(x)=-
1-(x-a)2
(a, b∈R)

(1)當(dāng)b=0時(shí),若f(x)在(-∞,2]上單調(diào)遞減,求a的取值范圍;
(2)求滿足下列條件的所有整數(shù)對(duì)(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(3)對(duì)滿足(II)中的條件的整數(shù)對(duì)(a,b),試構(gòu)造一個(gè)定義在D=x|x∈R且x≠2k,k∈Z上的函數(shù)h(x),使h(x+2)=h(x),且當(dāng)x∈(-2,0)時(shí),h(x)=f(x).
分析:(1)當(dāng)b=0時(shí),f(x)=ax2-4x,討論a是否為0,然后根據(jù)f(x)在(-∞,2]上單調(diào)遞減建立關(guān)系式,解之即可求出a的取值范圍;
(2)若a=0,f(x)=-2
4+2b-b2
x
,則f(x)無(wú)最大值,故a≠0,則f(x)為二次函數(shù),根據(jù)f(x)有最大值,建立關(guān)系式,然后求出f(x)有最大值時(shí)的自變量x0,最后根據(jù)g(x)取最小值時(shí),x0=a,根據(jù)條件建立等式,求出滿足條件的a與b,從而求出所求;
(3)當(dāng)整數(shù)對(duì)是(-1,-1),(-1,3)時(shí),f(x)=-x2-2x根據(jù)h(x)是以2為周期的周期函數(shù),當(dāng)x∈(-2,0)時(shí),h(x)=f(x),構(gòu)造h(x)如下:當(dāng)x∈(2k-2,2k),k∈Z,則,h(x)=h(x-2k)=f(x-2k)=-(x-2k)2-2(x-2k)即可.
解答:解:(1)當(dāng)b=0時(shí),f(x)=ax2-4x,(1分)
若a=0,f(x)=-4x,則f(x)在(-∞,2]上單調(diào)遞減,符合題意;(3分)
若a≠0,要使f(x)在(-∞,2]上單調(diào)遞減,
必須滿足
a>0 
4
2a
≥2
(5分)
∴0<a≤1.綜上所述,a的取值范圍是[0,1](6分)
(2)若a=0,f(x)=-2
4+2b-b2
x
,則f(x)無(wú)最大值,(7分)
故a≠0,∴f(x)為二次函數(shù),
要使f(x)有最大值,必須滿足
a<0            
4+2b-b2≥0
即a<0且1-
5
≤b≤1+
5
,(8分)
此時(shí),x0=
4+2b-b2
a
時(shí),f(x)有最大值.(9分)
又g(x)取最小值時(shí),x0=a,(10分)
依題意,有
4+2b-b2
a
=a∈Z
,則a2=
4+2b-b2
=
5-(b-1)2
,(11分)
∵a<0且1-
5
≤b≤1+
5
,∴0<a2
5
(a∈Z)
,得a=-1,(12分)
此時(shí)b=-1或b=3.
∴滿足條件的整數(shù)對(duì)(a,b)是(-1,-1),(-1,3).(13分)
(3)當(dāng)整數(shù)對(duì)是(-1,-1),(-1,3)時(shí),f(x)=-x2-2x∵h(yuǎn)(x+2)=h(x),
∴h(x)是以2為周期的周期函數(shù),(14分)
又當(dāng)x∈(-2,0)時(shí),h(x)=f(x),構(gòu)造h(x)如下:當(dāng)x∈(2k-2,2k),k∈Z,則,h(x)=h(x-2k)=f(x-2k)=-(x-2k)2-2(x-2k),
故h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k∈Z.(16分)
點(diǎn)評(píng):根據(jù)開(kāi)口方向和對(duì)稱軸建立關(guān)系式是解決二次函數(shù)的單調(diào)性的關(guān)鍵,同時(shí)考查了函數(shù)的周期性和函數(shù)的最值及其幾何意義,涉及的知識(shí)點(diǎn)較多,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過(guò)點(diǎn)Q(8,6).
(1)求a的值,并在直線坐標(biāo)系中畫(huà)出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點(diǎn);
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案