【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計劃種植甲、乙兩種水果,已知單位面積種植甲水果的經(jīng)濟(jì)價值是種植乙水果經(jīng)濟(jì)價值的5倍,但種植甲水果需要有輔助光照.半圓周上的處恰有一可旋轉(zhuǎn)光源滿足甲水果生長的需要,該光源照射范圍是,點在直徑上,且.
(1)若米,求的長;
(2)設(shè), 求該空地產(chǎn)生最大經(jīng)濟(jì)價值時種植甲種水果的面積.
【答案】(1)1或3(2)
【解析】試題分析:(1)利用余弦定理即可求得;(2)設(shè),由正弦定理求得,利用,計算面積,求出最大值,即可求該空地產(chǎn)生最大經(jīng)濟(jì)價值時種植甲種水果的面積.
試題解析:
解:(1)連結(jié),已知點在以為直徑的半圓周上,所以為直角三角形,
因為,,所以,,
在中由余弦定理,且,
所以,
解得或,
(2)因為,,
所以,
所以,
在中由正弦定理得:
所以,
在中,由正弦定理得:
所以,
若產(chǎn)生最大經(jīng)濟(jì)效益,則的面積最大,
,
因為,所以
所以當(dāng)時,取最大值為,此時該地塊產(chǎn)生的經(jīng)濟(jì)價值最大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,、是兩條公路(近似看成兩條直線),,在內(nèi)有一紀(jì)念塔(大小忽略不計),已知到直線、的距離分別為、,=6千米,=12千米.現(xiàn)經(jīng)過紀(jì)念塔修建一條直線型小路,與兩條公路、分別交于點、.
(1)求紀(jì)念塔到兩條公路交點處的距離;
(2)若紀(jì)念塔為小路的中點,求小路的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識,鄭州市面向全市征召義務(wù)宣傳志愿者,從符合條件的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:.
(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計這500名志愿者中年齡在歲的人數(shù);
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面是、邊長為的菱形,又底,且,點分別是棱的中點.
(1)證明:平面;
(2)證明:平面平面;
(3)求點到平面的距離.[
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(I)求直方圖中的值;
(II)求月平均用電量的眾數(shù)和中位數(shù);
(III)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C.假設(shè)纜車勻速直線運(yùn)動的速度為130m/min,山路AC長為1260m,經(jīng)測量,,.
(Ⅰ)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(Ⅱ)為使兩位游客在處互相等待的時間不超過分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC邊上的點,AD=AE,F(xiàn)是BC的中點,AF與DE交于點G,將△ABF沿AF折起,得到如圖2所示的三棱錐A﹣BCF,其中BC=.
(Ⅰ)證明:DE∥平面BCF;
(Ⅱ)證明:CF⊥平面ABF;
(Ⅲ)當(dāng)AD=時,求三棱錐F﹣DEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知國家某5A級大型景區(qū)對擁擠等級與每日游客數(shù)量(單位:百人)的關(guān)系有如下規(guī)定:當(dāng)時,擁擠等級為“優(yōu)”;當(dāng)時,擁擠等級為“良”;當(dāng)時,擁擠等級為“擁擠”;當(dāng)時,擁擠等級為“嚴(yán)重?fù)頂D”。該景區(qū)對6月份的游客數(shù)量作出如圖的統(tǒng)計數(shù)據(jù):
(Ⅰ)下面是根據(jù)統(tǒng)計數(shù)據(jù)得到的頻率分布表,求出的值,并估計該景區(qū)6月份游客人數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
游客數(shù)量 (單位:百人) | ||||
天數(shù) | ||||
頻率 |
(Ⅱ)某人選擇在6月1日至6月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級均為“優(yōu)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù));在以原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(I)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(II)若射線與曲線,的交點分別為(異于原點),當(dāng)斜率時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com