某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機(jī)會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計(jì)得分為x,求x≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎,問:他們選擇何種方案抽獎,累計(jì)得分的數(shù)學(xué)期望較大?
【答案】分析:(1)記“他們的累計(jì)得分X≤3”的事事件為A,則事件A的對立事件是“X=5”,由題意知,小明中獎的概率為,小紅中獎的概率為,且兩人抽獎中獎與否互不影響,先根據(jù)相互獨(dú)立事件的乘法公式求出對立事件的概率,再利用對立事件的概率公式即可求出他們的累計(jì)得分x≤3的概率.
(2)設(shè)小明、小紅兩人都選擇甲方案抽獎中獎次數(shù)為X1,甲小明、小紅兩人都選擇方案乙抽獎中獎次數(shù)為X2,則這兩人都選擇甲方案抽獎累計(jì)得分的數(shù)學(xué)期望為E(2X1),都選擇乙方案抽獎累計(jì)得分的數(shù)學(xué)期望為E(3X2).根據(jù)題意知X1~B(2,),X2~B(2,),利用貝努利概率的期望公式計(jì)算即可得出E(2X1)>E(3X2),從而得出答案.
解答:解:(1)由題意知,小明中獎的概率為,小紅中獎的概率為,且兩人抽獎中獎與否互不影響,
記“他們的累計(jì)得分X≤3”的事事件為A,則事件A的對立事件是“X=5”,
因?yàn)镻(X=5)=,∴P(A)=1-P(X=5)=;
即他們的累計(jì)得分x≤3的概率為
(2)設(shè)小明、小紅兩人都選擇甲方案抽獎中獎次數(shù)為X1,
甲小明、小紅兩人都選擇方案乙抽獎中獎次數(shù)為X2,則這兩人都選擇甲方案抽獎累計(jì)得分的數(shù)學(xué)期望為E(2X1
都選擇乙方案抽獎累計(jì)得分的數(shù)學(xué)期望為E(3X2
由已知可得,X1~B(2,),X2~B(2,),
∴E(X1)=2×=,E(X2)=2×=,
從而E(2X1)=2E(X1)=,E(3X2)=3E(X2)=,
由于E(2X1)>E(3X2),
∴他們選擇甲方案抽獎,累計(jì)得分的數(shù)學(xué)期望較大.
點(diǎn)評:本題考查利用概率知識解決實(shí)際問題,考查分類討論的數(shù)學(xué)思想,考查數(shù)學(xué)期望的計(jì)算,確定X服從的分布是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•福建)某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為
2
3
,中獎可以獲得2分;方案乙的中獎率為
2
5
,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機(jī)會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計(jì)得分為x,求x≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎,問:他們選擇何種方案抽獎,累計(jì)得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷(解析版) 題型:解答題

某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲.乙兩種抽獎方案,方案甲的中獎率為,中將可以獲得2分;方案乙的中獎率為,中將可以得3分;未中獎則不得分.每人有且只有一次抽獎機(jī)會,每次抽獎中將與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品.

(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計(jì)得分為,求的概率;

(2)若小明.小紅兩人都選擇方案甲或方案乙進(jìn)行抽獎,問:他們選擇何種方案抽獎,累計(jì)的得分的數(shù)學(xué)期望較大?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(福建卷解析版) 題型:解答題

某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以獲得3分;未中獎則不得分。每人有且只有一次抽獎機(jī)會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品。

(Ⅰ)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計(jì)得分為,求的概率;

(Ⅱ)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎,問:他們選擇何種方案抽獎,累計(jì)得分的數(shù)學(xué)期望較大?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲.乙兩種抽獎方案,方案甲的中獎率為,中將可以獲得2分;方案乙的中獎率為,中將可以得3分;未中獎則不得分.每人有且只有一次抽獎機(jī)會,每次抽獎中將與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品.

(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計(jì)得分為,求的概率;

(2)若小明.小紅兩人都選擇方案甲或方案乙進(jìn)行抽獎,問:他們選擇何種方案抽獎,累計(jì)的得分的數(shù)學(xué)期望較大?

查看答案和解析>>

同步練習(xí)冊答案