已知f(x)=(x-a)(x-b)-2,并且α、β是方程f(x)=0的兩實(shí)根,則實(shí)數(shù)α,β,a,b的大小關(guān)系可能是

[  ]

A.α<a<b<β

B.a<α<β<b

C.a<α<b<β

D.α<a<β<b

答案:A
解析:

  解法一:由題意,得α,β也是函數(shù)y=(x-a)(x-b)與y=2的圖象交點(diǎn)的橫坐標(biāo),在同一坐標(biāo)系中畫出這兩個函數(shù)的圖象如圖1所示,由圖象可得出α<a<b<β,故選A.

  解法二:由題意知,α,β是函數(shù)f(x)=(x-a)(x-b)-2的圖象與x軸交點(diǎn)的橫坐標(biāo),而函數(shù)f(x)的圖象又可以看成是由函數(shù)y=(x-a)(x-b)的圖象向下平行移動兩個單位而得到的,函數(shù)y=(x-a)(x-b)的兩個零點(diǎn)分別為a、b,在同一坐標(biāo)系中作出函數(shù)y=(x-a)(x-b)及f(x)=(x-a)·(x-b)-2的圖象如圖2所示;由圖象可得α<a<b<β,故選A.


提示:

  思路分析:由α,β是方程f(x)=0的兩實(shí)根,可以得出α,β是函數(shù)f(x)=(x-a)(x-b)-2的兩個零點(diǎn),也是函數(shù)y=(x-a)(x-b)與y=2的圖象的交點(diǎn)的橫坐標(biāo),所以畫出函數(shù)圖象,數(shù)形結(jié)合,得出正確結(jié)論.

  思想方法小結(jié):本題綜合考查函數(shù)的零點(diǎn)、方程的根及圖象交點(diǎn)之間的關(guān)系,靈活運(yùn)用函數(shù)性質(zhì)解題是必須要掌握的內(nèi)容.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:宜都一中2008屆高三數(shù)學(xué)周練(5) 題型:044

已知f(x)=x(x-a)(x-b),點(diǎn)A(s,f(s)),B(t,f(t)).

(1)若a=b=1,求函數(shù)f(x)的單調(diào)遞增區(qū)間;

(2)若函數(shù)f(x)的導(dǎo)函數(shù)滿足:當(dāng)|x|≤1時(shí),有恒成立,求函數(shù)f(x)的解析表達(dá)式;

(3)若0<a<b,函數(shù)f(x)在x=s和x=t處取得極值,且a+b=,證明:不可能垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天津一中2008-2009年高三年級三月考數(shù)學(xué)試卷(理) 題型:044

已知f(x)=(x∈R),在區(qū)間[-1,1]上是增函數(shù).

(1)求實(shí)數(shù)a的值組成的集合A;

(2)設(shè)關(guān)于x的方程f(x)=的兩個非零實(shí)根為x1、x2,試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知f(x)=x+1,若f(x+1)的圖象關(guān)于直線x=2對稱圖象對應(yīng)的函數(shù)為g(x),則g(x)為( )


  1. A.
    6-x
  2. B.
    x-6
  3. C.
    x-2
  4. D.
    -x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x-n2+2n+3(n=2k,k∈Z)的圖象在[0,+∞)上單調(diào)遞增,解不等式f(x2-x)>f(x+3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三8月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習(xí)冊答案