1.已知數(shù)列{bn}的前n項和Sn=n2+2n(n∈N+).
(1)求數(shù)列{bn}的通項公式;
(2)求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和Tn

分析 (1)由Sn=n2+2n(n∈N+).可得n=1時,b1=3;n≥2時,bn=Sn-Sn-1
(2)由(1)可得$\frac{1}{_{n}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.利用“裂項求和方法”即可得出.

解答 解:(1)∵Sn=n2+2n(n∈N+).∴n=1時,b1=3;n≥2時,bn=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1.
n=1時也成立,∴bn=2n+1.
(2)由(1)可得$\frac{1}{_{n}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.
∴數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和Tn=$\frac{1}{2}$$[(\frac{1}{3}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$
=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$,
∴${T_n}=\frac{n}{6n+9}$.

點評 本題考查了數(shù)列遞推關(guān)系、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.若A=(-1,3],B=[2,5),則A∪B=(-1,5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.(1)把“五進制”數(shù)1234(5)轉(zhuǎn)化為“八進制”數(shù),即1234(5)=302(8)
(2)總體由編號為01,02,…,49,50的50個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第9列數(shù)字0開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為43
78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖所示,四棱錐P-ABCD的底面ABCD是直角梯形,BC∥AD,AB⊥AD,AB=BC=$\frac{1}{3}$AD,PA⊥底面ABCD,過AB的平面交PD于AB,交PC于N(N與A不重合).
(Ⅰ)求證:MN∥BC;
(Ⅱ)如果BM⊥AC,求此時$\frac{PM}{PD}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知m,n是兩條不同的直線,α、β是兩個不同的平面,若m?α,n?β,且α∥β,則下列結(jié)論一定正確的是(  )
A.m∥nB.m⊥nC.m、n異面D.m∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若集合A={x||x|≤1},B={(x,y)|y=x2},則A∩B=∅.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.四邊形ABCD是正方形,PB⊥平面ABCD,MA∥PB,PB=AB=2MA.
(1)求直線BD與平面PCD所成的角;
(2)求平面PMD與平面ABCD所成角的大小的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知等差數(shù)列{an}中,${a_3}=\frac{π}{4}$,則cos(a1+a2+a6)=$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若一個圓錐的側(cè)面展開圖是一個半徑為3cm,圓心角為60°的扇形,則該圓錐的體積為$\frac{\sqrt{35}}{24}$π.

查看答案和解析>>

同步練習冊答案