7.若復數(shù)z=2m2-3m-2+(6m2+5m+1)i是純虛數(shù),則實數(shù)m的值為2.

分析 由復數(shù)z=2m2-3m-2+(6m2+5m+1)i是純虛數(shù),得實部等于0,虛部不等于0,求解即可得答案.

解答 解:∵復數(shù)z=2m2-3m-2+(6m2+5m+1)i是純虛數(shù),
∴$\left\{\begin{array}{l}{2{m}^{2}-3m-2=0}\\{6{m}^{2}+5m+1≠0}\end{array}\right.$,解得m=2.
故答案為:2.

點評 本題考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知f(x)=$\frac{{x}^{2}}{a(x+b)}$在點(2,f(2))處的切線方程為y=2.
(1)求a,b的值;
(2)已知各項均為負的數(shù)列{an}滿足4Sn•f($\frac{1}{{a}_{n}}$)=1,(Sn為數(shù)列{an}的前n項和),求證:-$\frac{1}{{a}_{n+1}}$<ln$\frac{n+1}{n}$<-$\frac{1}{{a}_{n}}$;
(3)設bn=-$\frac{1}{{a}_{n}}$,Tn為數(shù)列{bn}的前n項和,求證:T2017-1<ln2017<T2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若p=$\sqrt{a+2}$+$\sqrt{a+5}$,q=$\sqrt{a+3}$+$\sqrt{a+4}$,a≥0,則p、q的大小關系是( 。
A.p<qB.p>qC.p=qD.由a的取值確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.空間中兩點A(1,0,1),B(2,1,-1),則|AB|的值為( 。
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如果復數(shù)$\overline{z}=\frac{2}{-1+i}$,則( 。
A.|z|=2B.z的實部為1
C.z的虛部為-1D.z的共軛復數(shù)為-1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設數(shù)列{an}的前n項和為Sn,對一切n∈N*,點(n,$\frac{{S}_{n}}{n}$)都在函數(shù)f(x)=x+$\frac{{a}_{n}}{2x}$的圖象上.
(1)求a1,a2,a3的值,猜想an的表達式,并用數(shù)學歸納法證明;
(2)將數(shù)列{an}依次按1項、2項、3項、4項循環(huán)地分為
(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);
(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);
(a21),(a22,a23),(a24,a25,a26),(a27,a28,a29,a30);…
分別計算各個括號內(nèi)各數(shù)之和,設由這些和按原來括號的前后順序構成的數(shù)列為{bn},求b2018-b1314的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某幾何體的三視圖如圖,則該幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在R上定義運算?:x?y=$\frac{x}{2-y}$,若關于x的不等式:(x-a)?(x+1-a)>0的解集是集合{x|-2≤x≤2}的子集,則實數(shù)a的取值范圍是[-2,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設集合A={(x,y)|y=x+1},B={(x,y)||x|+|y|=1},則A∩B中的元素個數(shù)為( 。
A.0個B.1個C.2個D.無數(shù)個

查看答案和解析>>

同步練習冊答案