已知等比數(shù)列{an}的前n項(xiàng)和Sn=t•2n-1+1,則t的值為
 
考點(diǎn):等比數(shù)列的性質(zhì)
專(zhuān)題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:先根據(jù)等比數(shù)列的前n項(xiàng)的和分別求得a1,a2,a3的值進(jìn)而利用等比數(shù)列的等比中項(xiàng)求得t.
解答: 解:∵等比數(shù)列{an}中,Sn=t•2n-1+1,
∴a1=t+1,a2=S2-S1=t,a3=S3-S2=2t,
∴(t+1)•2t=t2,∴t=-2.
故答案為:-2.
點(diǎn)評(píng):本題主要考查了等比數(shù)列的前n項(xiàng)的和,考查等比數(shù)列的等比中項(xiàng),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-1,對(duì)于滿(mǎn)足0<x1<x2<2的任意x1,x2,給出下列結(jié)論:
①(x2-x1)[f(x2)-f(x1)]<0;
②x2f(x1)<x1f(x2);
③f(x2)-f(x1)>x2-x1;    
f(x1)+f(x2)
2
>f(
x1+x2
2
).
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:x>y>0,且xy=1,若x2+y2≥a(x-y)恒成立,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-a)(x-b)2,(0<a<b),g(x)=k(x-b),(k∈R).
(1)討論函數(shù)f(x)在R上的單調(diào)性;
(2)討論f(x)與g(x)的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
1-2x
x+1
>1的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x2+y2=5,則x+2y的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,A,B分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點(diǎn),以AB為一邊做矩形ABCD,且AD=
3
b.P為橢圓在第一象限上的任意一點(diǎn),連接PD,PC,分別與x軸交于點(diǎn)M,N,則
|MN|2
|AM||BN|
=( 。
A、1
B、
4
3
C、
5
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

今有10個(gè)大小相同的乒乓球都放在一個(gè)黑色的袋子里,其中4個(gè)球上標(biāo)了數(shù)字1,3個(gè)球上標(biāo)了數(shù)字2,剩下的球都標(biāo)了數(shù)字5,現(xiàn)從中任取3個(gè)球,求所取的球數(shù)字總和超過(guò)8的概率是( 。
A、
19
120
B、
23
120
C、
31
120
D、
37
120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿(mǎn)足①f(x)+f(2-x)=0,②f(x)-f(-2-x)=0,③在[-1,1]上表達(dá)式為,f(x)=
1-x2
x∈[-1,0]
1-x;x∈(0,1]
則函數(shù)f(x)與函數(shù)g(x)=
2x,x≤0
log
1
2
x
,x>0
的圖象在區(qū)間[-3,3]上的交點(diǎn)個(gè)數(shù)為( 。
A、5B、6C、7D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案