已知函數(shù),且是函數(shù)的一個(gè)極小值點(diǎn).
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值和最小值.
(1);(2)當(dāng)或時(shí),有最小值;當(dāng)或時(shí),有最大值.
解析試題分析:(1)先求函數(shù)的導(dǎo)函數(shù),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a4/e/chfv81.png" style="vertical-align:middle;" />是函數(shù)的一個(gè)極小值點(diǎn),所以,即可求得的值.(2)由(1)知,,求導(dǎo),在令導(dǎo)數(shù)等于0,討論導(dǎo)數(shù)的正負(fù)可得函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的單調(diào)區(qū)間可求其最值.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),其中m,a均為實(shí)數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)f(x)=-x3+ax2-4(),是f(x)的導(dǎo)函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),且是函數(shù)的一個(gè)極小值點(diǎn).
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù),,,記.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減,其圖象與軸交于三點(diǎn),其中點(diǎn)的坐標(biāo)為.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)與函數(shù)在點(diǎn)處有公共的切線,設(shè).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)f(x)=lnx-a2x2+ax(aR).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
試題解析:(1). 2分
是函數(shù)的一個(gè)極小值點(diǎn),
.
即,解得. 4分
經(jīng)檢驗(yàn),當(dāng)時(shí),是函數(shù)的一個(gè)極小值點(diǎn).
實(shí)數(shù)的值為 5分
(2)由(1)知,.
.
令,得或. 7分
當(dāng)在上變化時(shí),的變化情況如下:
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(1)若曲線在點(diǎn)處的切線與直線平行,求的值;
(2)求證函數(shù)在上為單調(diào)增函數(shù);
(3)設(shè),,且,求證:.
(1)求的極值;
(2)設(shè),若對(duì)任意的,恒成立,求的最小值;
(3)設(shè),若對(duì)任意給定的,在區(qū)間上總存在,使得成立,求的取值范圍.
(1)當(dāng)a=2時(shí),對(duì)任意的求的最小值;
(2)若存在使f(x0)>0,求a的取值范圍.
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值和最小值.
(1)求曲線在處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),若函數(shù)沒有零點(diǎn),求的取值范圍.
(1)求的值;
(2)求的取值范圍;
(3)求的取值范圍.
(1) 求的值
(2)求在區(qū)間上的最小值.
(l)當(dāng)a=1時(shí),證明:函數(shù)f(x)只有一個(gè)零點(diǎn);
(2)若函數(shù)f(x)在區(qū)間(1,十)上是減函數(shù),求實(shí)數(shù)a的取值范圍.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)