精英家教網 > 高中數學 > 題目詳情

求下面數列的前n項和:
1,3,5,7,…

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知等比數列中,,前項和是前項中所有偶數項和的倍.
(1)求通項;
(2)已知滿足,若是遞增數列,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列中,
(1)求,;
(2)求證:是等比數列,并求的通項公式;
(3)數列滿足,數列的前n項和為,若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前項和為.
(1)求數列的通項公式;
(2)設log2an+1 ,求數列的前項和。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在數列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
(1)求證:數列{an-n}是等比數列;
(2)求數列{an}的前n項和Sn;
(3)求證:不等式Sn+1≤4Sn對任意n∈N*皆成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}滿足:a1=1,a2=2,2an=an-1+an+1(n≥2,n∈N*),數列{bn}滿足b1=2,anbn+1=2an+1bn.
(1)求數列{an}的通項an;
(2)求證:數列為等比數列,并求數列{bn}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}的前n項和Sn,求通項an.
(1)Sn=3n-1;
(2)Sn=n2+3n+1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}的前n項和為Sn,且Sn=4an-3(n∈N*).
(1)證明:數列{an}是等比數列;
(2)若數列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數列{bn}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

等比數列的前項和,已知,,,成等差數列.
(1)求數列的公比和通項;
(2)若是遞增數列,令,求.

查看答案和解析>>

同步練習冊答案