如圖,已知橢圓的左、右焦點分別為,下頂點為,點是橢圓上任一點,圓是以為直徑的圓.

⑴當圓的面積為,求所在的直線方程;

⑵當圓與直線相切時,求圓的方程;

 

【答案】

;⑵; .

【解析】(1) 設(shè),先求出,進而根椐圓的面積為,建立方程,解出,進而確定.PA的直線方程易求.

(2) 直線的方程為,且到直線的距離為

,得到,再根據(jù)點P在橢圓上滿足,兩方程聯(lián)立可得M的坐標,到此問題基本得到解決.

解:⑴易得,,設(shè)

,

, ………………2

又圓的面積為,∴,解得,    ∴,

所在的直線方程為;……………5

⑵∵直線的方程為,且到直線的距離為

,   化簡得,………………………6

聯(lián)立方程組,解得.     ………………………10

時,可得,   ∴ 圓的方程為;………11

時,可得, ∴ 圓的方程為;…12

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分16分)

在平面直角坐標系中,如圖,已知橢圓的左、右頂點為A、B,右焦點為F。設(shè)過點T()的直線TA、TB與橢圓分別交于點M、,其中m>0,

(1)設(shè)動點P滿足,求點P的軌跡;

(2)設(shè),求點T的坐標;

(3)設(shè),求證:直線MN必過x軸上的一定點(其坐標與m無關(guān))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省高三第三次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓的左焦點為F,過點F的直線交橢圓于A、B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D、E兩點.

(Ⅰ)若點G的橫坐標為,求直線AB的斜率;

(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2

試問:是否存在直線AB,使得S1=S2?說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第七次月考文科數(shù)學(xué) 題型:填空題

如圖,已知橢圓的左頂點為,左焦點為,上頂點為,若,則該橢圓的離心率是           .

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年重慶市高三下學(xué)期五月月考數(shù)學(xué)(理) 題型:填空題

1.    如圖,已知橢圓的左、右準線分別為l1、l2,且分別交x軸于C、D兩點,從l1上一點A發(fā)出一條光線經(jīng)過橢圓的左焦點Fx軸反射后與l2交于點B,若,且,則橢圓的離心率等于_____________.

 

查看答案和解析>>

同步練習(xí)冊答案