【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 滿(mǎn)足an= +2n﹣2,n∈N* , 且S2=6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明: + + +…+

【答案】
(1)解:∵an= +2n﹣2,n∈N*,且S2=6.

∴a2= +2×2﹣2=5,a1+a2=6,

解得a1=1.

又nan=Sn+2n2﹣2n,

當(dāng)n≥2時(shí),(n﹣1)an1=Sn1+2(n﹣1)2﹣2(n﹣1),

相減可得:nan﹣(n﹣1)an1=an+4n﹣4,

化為an﹣an1=4,

∴數(shù)列{an}是等差數(shù)列,首項(xiàng)為1,公差為4.

∴an=1+4(n﹣1)=4n﹣3


(2)證明:Sn= =n(2n﹣1).

∴n≥3, =

+ + +…+ <1+ + + +…+ =

+ + +…+


【解析】(1)利用遞推關(guān)系、等差數(shù)列的通項(xiàng)公式即可得出;(2)Sn= =n(2n﹣1).n≥3, = .利用“裂項(xiàng)求和”即可得出.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了紀(jì)念“中國(guó)紅軍長(zhǎng)征90周年”,增強(qiáng)學(xué)生對(duì)“長(zhǎng)征精神”的深刻理解,在全校組織了一次有關(guān)“長(zhǎng)征”的知識(shí)競(jìng)賽,經(jīng)過(guò)初賽、復(fù)賽,甲、乙兩個(gè)代表隊(duì)(每隊(duì)3人)進(jìn)入了決賽,規(guī)定每人回答一個(gè)問(wèn)題,答對(duì)為本隊(duì)贏得20分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為 ,乙隊(duì)中3人答對(duì)的概率分別為 , , ,且各人回答正確與否相互之間沒(méi)有影響,用 表示乙隊(duì)的總得分.
(1)求 的分布列和均值;
(2)求甲、乙兩隊(duì)總得分之和等于40分且甲隊(duì)獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十八屆五中全會(huì)公報(bào)指出:努力促進(jìn)人口均衡發(fā)展,堅(jiān)持計(jì)劃生育的基本國(guó)策,完善人口發(fā)展戰(zhàn)略,全面實(shí)施一對(duì)夫婦可生育兩個(gè)孩子的政策,提高生殖健康、婦幼保健、托幼等公共服務(wù)水平.為了解適齡公務(wù)員對(duì)放開(kāi)生育二胎政策的態(tài)度,某部門(mén)隨機(jī)調(diào)查了100位30到40歲的公務(wù)員,得到情況如下表:

男公務(wù)員

女公務(wù)員

生二胎

40

20

不生二胎

20

20


(1)是否有95%以上的把握認(rèn)為“生二胎與性別有關(guān)”,并說(shuō)明理由;
(2)把以上頻率當(dāng)概率,若從社會(huì)上隨機(jī)抽取3位30到40歲的男公務(wù)員,記其中生二胎的人數(shù)為X,求隨機(jī)變量X的分布列,數(shù)學(xué)期望.
附:K2=

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a3=3,S7=28,在等比數(shù)列{bn}中,b3=4,b4=8.
(1)求an及bn;
(2)設(shè)數(shù)列{anbn}的前n項(xiàng)和為T(mén)n , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, , 分別是 的中點(diǎn),將 沿直線 折起,使二面角 的大小為 ,則 與平面 所成角的正切值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在梯形ABCD中,∠ADC= ,AB∥CD,PC⊥平面ABCD,CP=AB=2DC=2DA,點(diǎn)E在BP上,且EB=2PE.
(1)求證:DP∥平面ACE;
(2)求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,圓的參數(shù)方程為 (φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為
(1)將圓的參數(shù)方程化為普通方程,在化為極坐標(biāo)方程;
(2)若點(diǎn)P在直線l上,當(dāng)點(diǎn)P到圓的距離最小時(shí),求點(diǎn)P的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班級(jí)50名學(xué)生的考試分?jǐn)?shù)x分布在區(qū)間[50,100)內(nèi),設(shè)分?jǐn)?shù)x的分布頻率是f(x)且f(x)= ,考試成績(jī)采用“5分制”,規(guī)定:考試分?jǐn)?shù)在[50,60)內(nèi)的成績(jī)記為1分,考試分?jǐn)?shù)在[60,70)內(nèi)的成績(jī)記為2分,考試分?jǐn)?shù)在[70,80)內(nèi)的成績(jī)記為3分,考試分?jǐn)?shù)在[80,90)內(nèi)的成績(jī)記為4分,考試分?jǐn)?shù)在[90,100)內(nèi)的成績(jī)記為5分.用分層抽樣的方法,現(xiàn)在從成績(jī)?cè)?分,2分及3分的人中用分層抽樣隨機(jī)抽出6人,再?gòu)倪@6人中抽出3人,記這3人的成績(jī)之和為ξ(將頻率視為概率).
(1)求b的值,并估計(jì)班級(jí)的考試平均分?jǐn)?shù);
(2)求P(ξ=7);
(3)求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}的第2項(xiàng)、第5項(xiàng)分別為二項(xiàng)式(2x+1)5展開(kāi)式的第5項(xiàng)、第2項(xiàng)的系數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前n項(xiàng)和為Sn , 若存在實(shí)數(shù)λ,使 恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案