【題目】已知( +3x2)n的展開式中,各項(xiàng)系數(shù)和比它的二項(xiàng)式系數(shù)和大992,求:
(1)展開式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)展開式中系數(shù)最大的項(xiàng).
【答案】
(1)解:由題意可得 4n﹣2n=992,求得 2n=32,∴n=5.
故展開式中二項(xiàng)式系數(shù)最大的項(xiàng)為第三項(xiàng)或第四項(xiàng),
即 T3= 9x6=90x6,或 T4= 27 =270 .
(2)解:由于( +3x2)5的展開式的通項(xiàng)公式為 Tr+1= 3r ,
故第r+1項(xiàng)的系數(shù)為3r ,r=0,1,2,3,4,5,
故當(dāng)r=4時(shí),該項(xiàng)的系數(shù)最大,即第5項(xiàng)的系數(shù)最大,該項(xiàng)為 T5= 81 =405
【解析】(1)由題意可得 4n﹣2n=992,求得n的值,可得展開式中二項(xiàng)式系數(shù)最大的項(xiàng).(2)利用通項(xiàng)公式求得第r+1項(xiàng)的系數(shù)為3r ,r=0,1,2,3,4,5,檢驗(yàn)可得系數(shù)最大的項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知 a>0 且 a≠1,若函數(shù)f(x)=loga(x﹣1),g(x)=loga(5﹣x).
(1)求函數(shù)h(x)=f(x)﹣g(x)的定義域;
(2)討論不等式f(x)≥g(x)成立時(shí)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2﹣4x+2y+m=0與y軸交于A,B兩點(diǎn),且∠ACB=90°(C為圓心),過(guò)點(diǎn)P(0,2)且斜率為k的直線與圓C相交于M,N兩點(diǎn).
(1)求實(shí)數(shù)m的值;
(2)若|MN|≥4,求k的取值范圍;
(3)若向量 與向量 共線(O為坐標(biāo)原點(diǎn)),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋子中放有大小和形狀相同的四個(gè)小球,它們的標(biāo)號(hào)分別為1、2、3、4,現(xiàn)從袋中不放回地隨機(jī)抽取兩個(gè)小球,記第一次取出的小球的標(biāo)號(hào)為a,第二次取出的小球的標(biāo)號(hào)為b,記事件A為“a+b≥6“.
(1)列舉出所有的基本事件(a,b),并求事件A的概率P(A);
(2)在區(qū)間[0,2]內(nèi)任取兩個(gè)實(shí)數(shù)x,y,求事件“x2+y2≥12P(A)“的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(﹣3)=0,當(dāng)x>0時(shí),有f(x)﹣xf′(x)>0成立,則不等式f(x)>0的解集是( )
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(0,3)
D.(﹣3,0)∪(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校從參加高一年級(jí)期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為150分),數(shù)學(xué)成績(jī)分組及各組頻數(shù)如下:
[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)在給出的樣本頻率分布表中,求A,B,C,D的值;
(2)估計(jì)成績(jī)?cè)?20分以上(含120分)學(xué)生的比例;
(3)為了幫助成績(jī)差的學(xué)生提高數(shù)學(xué)成績(jī),學(xué)校決定成立“二幫一”小組,即從成績(jī)?cè)赱135,150]的學(xué)生中選兩位同學(xué),共同幫助成績(jī)?cè)赱60,75)中的某一位同學(xué).已知甲同學(xué)的成績(jī)?yōu)?2分,乙同學(xué)的成績(jī)?yōu)?40分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.
樣本頻率分布表:
分組 | 頻數(shù) | 頻率 |
[60,75) | 2 | 0.04 |
[75,90) | 3 | 0.06 |
[90,105) | 14 | 0.28 |
[105,120) | 15 | 0.30 |
[120,135) | A | B |
[135,150] | 4 | 0.08 |
合計(jì) | C | D |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知向量 =(﹣1,2),又點(diǎn)A(8,0),B(n,t),C(ksinθ,t).
(1)若 ⊥ ,且| |= | |,求向量 ;
(2)若向量 與向量 共線,常數(shù)k>0,求f(θ)=tsinθ的值域;
(3)當(dāng)(2)問(wèn)中f(θ)的最大值4時(shí),求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,在以極點(diǎn)為直角坐標(biāo)原點(diǎn),極軸為軸的正半軸建立的平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)在平面直角坐標(biāo)系中,設(shè)曲線經(jīng)過(guò)伸縮變換: 得到曲線,若為曲線上任意一點(diǎn),求點(diǎn)到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位舉行聯(lián)歡活動(dòng),每名職工均有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)都是從甲箱和乙箱中各隨機(jī)摸取1個(gè)球,已知甲箱中裝有3個(gè)紅球,5個(gè)綠球,乙箱中裝有3個(gè)紅球,3個(gè)綠球,2個(gè)黃球.在摸出的2個(gè)球中,若都是紅球,則獲得一等獎(jiǎng);若都是綠球,則獲得二等獎(jiǎng);若只有1個(gè)紅球,則獲得三等獎(jiǎng);若1個(gè)綠球和1個(gè)黃球,則不獲獎(jiǎng).
(1)求每名職工獲獎(jiǎng)的概率;
(2)設(shè)X為前3名職工抽獎(jiǎng)中獲得一等獎(jiǎng)和二等獎(jiǎng)的次數(shù)之和,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com