精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱錐中,平面,,且,.

1)證明:.

2)若,試在棱上確定一點,使與平面所成角的正弦值為.

【答案】1)證明見解析;(2)點為棱的中點

【解析】

1)在同一平面內用數據說話證明 ,利用平面,證明,

從而得證平面,得到.

1)取的中點,以為坐標原點建立空間直角坐標系,使用空間向量求及平面的一個法向量,利用夾角公式求解即可.

1)證明:∵,且,∴

,又∵,∴,即.

平面,平面,∴,

又∵,∴平面,

平面,∴.

2)解:取的中點,以為坐標原點,,所在的直線分別為軸,軸,軸建立空間直角坐標系.如圖所示.

,則,,

,

.

由(1)可知,平面,∴為平面的一個法向量.

與平面所成的角為.

,

整理得,解得(舍),

∴點為棱的中點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知正四棱錐的側棱和底面邊長相等,在這個正四棱錐的條棱中任取兩條,按下列方式定義隨機變量的值:

若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大小(弧度制);

若這兩條棱所在的直線平行,則

若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).

(1)求的值;

(2)求隨機變量的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為弘揚新時代的中國女排精神.甲、乙兩個女排校隊舉行一場友誼比賽,采用五局三勝制(即某隊先贏三局則獲勝,比賽隨即結束).若兩隊的競技水平和比賽狀態(tài)相當,且每局比賽相互獨立,則比賽結束時已經進行的比賽局數的數學期望是______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐的底面為邊長為2的菱形,平面,,為棱上一點,且.

1)求證:

2)求二面角的余弦值;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐PABCD中,△PAB是邊長為2的等邊三角形,底面ABCD為直角梯形,ABCD,ABBCBCCD1,PD.

1)證明:ABPD.

2)求二面角APBC的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠利用隨機數表對生產的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001002,....599600從中抽取60個樣本,現提供隨機數表的第4行到第6行:

若從表中第6行第6列開始向右依次讀取3個數據,則得到的第7個樣本編號(

A.522B.324C.535D.578

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】廠家在產品出廠前,需對產品做檢驗,第一次檢測廠家的每件產品合格的概率為,如果合格,則可以出廠;如果不合格,則進行技術處理,處理后進行第二次檢測.每件產品的合格率為,如果合格,則可以出廠,不合格則當廢品回收.

求某件產品能出廠的概率;

若該產品的生產成本為/件,出廠價格為/件,每次檢測費為/件,技術處理每次/件,回收獲利/.假如每件產品是否合格相互獨立,記為任意一件產品所獲得的利潤,求隨機變量的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據某地區(qū)氣象水文部門長期統(tǒng)計,可知該地區(qū)每年夏季有小洪水的概率為0.25,有大洪水的概率為0.05.

1)從該地區(qū)抽取的年水文資料中發(fā)現,恰好3年無洪水事件的概率與恰好4年有洪水事件的概率相等,求的值;

2)今年夏季該地區(qū)某工地有許多大型設備,遇到大洪水時要損失60000元,遇到小洪水時要損失20000.為保護設備,有以下3種方案:

方案1:修建保護圍墻,建設費為3000元,但圍墻只能防小洪水.

方案2:修建保護大壩,建設費為7000元,能夠防大洪水.

方案3:不采取措施.

試比較哪一種方案好,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某農科院為試驗冬季晝夜溫差對反季節(jié)大豆新品種發(fā)芽的影響,對溫差與發(fā)芽率之間的關系進行統(tǒng)計分析研究,記錄了6天晝夜溫差與實驗室中種子發(fā)芽數的數據如下:

日期

11

12

13

14

15

16

溫差(攝氏度)

10

11

12

13

8

9

發(fā)芽數(粒)

26

27

30

32

21

24

他們確定的方案是先從這6組數據中選出2組,用剩下的4組數據求回歸方程,再用選取的兩組數據進行檢驗.

1)求選取的2組數據恰好是相鄰2天數據的概率;

2)若由線性回歸方程得到的估計數據與實際數據的誤差不超過1粒,則認為得到的線性回歸方程是可靠的.請根據12,34,5日的數據求出關于的線性回歸方程(保留兩位小數),并檢驗此方程是否可靠.

參考公式:,

查看答案和解析>>

同步練習冊答案