分析 (1)求出二次函數(shù)的對稱軸方程,討論對稱軸和區(qū)間[-1,1]的關系,求出函數(shù)的最值即可;
(2)設m<x1<x2<m+1,m為整數(shù).分類討論k的存在性,綜合討論結果,可得答案.
解答 解:(1)當b=1時,f(x)=(x+$\frac{a}{2}$)2+1-$\frac{{a}^{2}}{4}$,對稱軸為x=-$\frac{a}{2}$,
當a≤-2時,函數(shù)f(x)在[-1,1]上遞減,則函數(shù)的最大值為:f(-1)=-a;最小值為:f(1)=a.
函數(shù)f(x)在[-1,1]上的值域:[a,-a].
當0<a≤2時,即有-1≤-$\frac{a}{2}$<0,函數(shù)的最小值:f(-$\frac{a}{2}$)=1-$\frac{{a}^{2}}{4}$;最大值為:f(1)=2+a.
函數(shù)f(x)在[-1,1]上的值域:[1-$\frac{{a}^{2}}{4}$,2-a].
當-2<a≤0時,0≤-$\frac{a}{2}$<1,函數(shù)f(x)的最小值為:f(-$\frac{a}{2}$)=1-$\frac{{a}^{2}}{4}$;最大值為:f(-1)=2-a.
函數(shù)f(x)在[-1,1]上的值域:[1-$\frac{{a}^{2}}{4}$,2+a].
當a>2時,$-\frac{a}{2}$<-1,函數(shù)f(x)在[-1,1]上遞減,
則函數(shù)的最小值為:f(-1)=-a;最大值為:f(1)=a.
函數(shù)f(x)在[-1,1]上的值域:[-a,a].…(6分)
(2)設m<x1<x2<m+1,m為整數(shù).
則△=a2-4b>0,即b<$\frac{{a}^{2}}{4}$,
①當-$\frac{a}{2}$∈(m,m+$\frac{1}{2}$],即-1≤a+2m<0時,
f(m)=m2+am+b<m2+am+$\frac{{a}^{2}}{4}$=(m+$\frac{a}{2}$)2≤$\frac{1}{4}$;
②當-$\frac{a}{2}$∈(m+$\frac{1}{2}$,m+1),即-2<a+2m<-1時,
f(m+1)=(m+1)2+a(m+1)+b<(m+2)2+a(m+1)+$\frac{{a}^{2}}{4}$=(m+1+$\frac{a}{2}$)2≤$\frac{1}{4}$;
綜上,存在整數(shù)k,使得|f(k)|≤$\frac{1}{4}$.…(12分)
點評 本題考查的知識點是二次函數(shù)的圖象和性質,分類討論思想,熟練掌握二次函數(shù)的圖象和性質,是解答的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=3x | B. | y=2x(-1≤x<1) | ||
C. | $y=\left\{\begin{array}{l}{x^2}+x,x>0\\{x^2}-x,x<0\end{array}\right.$ | D. | y=2x-2-x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
房41017 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
A戶型 | 2.6 | 2.7 | 2.8 | 2.8 | 2.9 | 3.2 | 2.9 | 3.1 | 3.4 | 3.3 | 3.4 | 3.3 |
B戶型 | 3.6 | 3.7 | 3.7 | 3.9 | 3.8. | 3.9 | 4.3 | 4.4 | 4.1 | 4.2 | 4.3 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $8-\frac{π}{3}$ | B. | $8-\frac{π}{6}$ | C. | $\frac{20}{3}$ | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,0) | C. | (0,1] | D. | (-∞,1] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com