9.已知△ABC中,a=1,$b=\sqrt{3}$,A=30°,則B等于(  )
A.30°B.30°或150°C.60°D.60°或120°

分析 根據(jù)題意和正弦定理求出sinB的值,由邊角關(guān)系、內(nèi)角的范圍、特殊角的三角函數(shù)值求出B.

解答 解:由題意得,△ABC中,a=1,$b=\sqrt{3}$,A=30°,
由$\frac{a}{sinA}=\frac{sinB}$得,sinB=$\frac{b•sinA}{a}$=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
又b>a,0°<B<180°,
則B=60°或B=120°,
故選:D.

點(diǎn)評(píng) 本題考查正弦定理,以及邊角關(guān)系的應(yīng)用,注意內(nèi)角的范圍,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且${a_1},\frac{1}{2}{a_3},2{a_2}$成等比數(shù)列,則公比q等于( 。
A.2B.$1-\sqrt{2}$C.$3+2\sqrt{2}$D.$3-2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知點(diǎn)(x,y)滿足不等式組$\left\{\begin{array}{l}x-y+3≥0\\ 2x-y-1≤0\\ 3x+2y-6≥0\end{array}\right.$,則z=x+y的最小值為( 。
A.3B.11C.$\frac{17}{7}$D.$\frac{15}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.甘班全體同學(xué)某次考試數(shù)學(xué)成績(jī)(滿分:100分)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),則圖中x的值等于(  )
A.0.012B.0.018C.0.12D.0.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若bsinB-asinA=$\frac{1}{2}$asinC,且△ABC的面積為a2sinB,則cosB=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如果方程$\frac{x^2}{m^2}+\frac{y^2}{m+2}=1$表示焦點(diǎn)在x軸上的橢圓,則實(shí)數(shù)m的取值范圍是( 。
A.(2,+∞)B.(-∞,-1)C.(-∞,-1)∪(2,∞)D.(-2,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知命題p:?x∈R,2x-3≤0.若(¬p)∧q是假命題,則命題q可以是( 。
A.橢圓3x2+4y2=2的焦點(diǎn)在x軸上
B.圓x2+y2-2x-4y-1=0與x軸相交
C.若集合A∪B=A,則B⊆A
D.已知點(diǎn)A(1,2)和點(diǎn)B(3,0),則直線x+2y-3=0與線段AB無(wú)交點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語(yǔ)音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國(guó),甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場(chǎng)隨機(jī)采訪男性、女性用戶各50 名,其中每天玩微信超過(guò)6 小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控非微信控合計(jì)
男性262450
女性302050
合計(jì)5644100
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與”性別“有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5 人并從選出的5 人中再隨機(jī)抽取3 人贈(zèng)送200 元的護(hù)膚品套裝,記這3 人中“微信控”的人數(shù)為X,試求X 的分布列與數(shù)學(xué)期望.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=(a+2cos2$\frac{x}{2}$)cos(x+$\frac{π}{2}$),且f($\frac{π}{2}$)=0.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若f($\frac{α}{2}$)=-$\frac{2}{5}$,α∈($\frac{π}{2}$,π),求cos($\frac{π}{6}$-2α)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案