精英家教網 > 高中數學 > 題目詳情
若拋物線的焦點與雙曲線的右焦點重合,則的值為C
 .             .            .           .
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題15分)已知曲線C是到點和到直線

距離相等的點的軌跡,l是過點Q(-1,0)的直線,
MC上(不在l上)的動點;A、Bl上,
軸(如圖)。
(Ⅰ)求曲線C的方程;
(Ⅱ)求出直線l的方程,使得為常數。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知動點的坐標滿足,則動點的軌跡是(      )
A.橢圓B.雙曲線C.拋物線D.以上都不對

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分13分)已知橢圓,直線與橢圓交于、兩點,是線段的中點,連接并延長交橢圓于點設直線與直線的斜率分別為、,且,求橢圓的離心率.若直線經過橢圓的右焦點,且四邊形是平行四邊形,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓C1的左準線為l,左右焦點分別為F1F­2,拋物線C2的準線為l,一個焦點為F2,C1與C2的一個交點為P,則等于(   )
A.-1B.1C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線上任意一點到焦點F的距離比到軸的距離大1,(1)求拋物線C的方程;(2)若過焦點F的直線交拋物線于M,N兩點,M在第一象限,且,求直線MN的方程;(3)過點的直線交拋物線于P、Q兩點,設點P關于軸的對稱點為R,求證:直線RQ必過定點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知點P(4,4),圓C:(x-m)2+y2=5(m<3)與橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
有一個公共點A(3,1),F1,F2分別是橢圓的左右焦點,直線PF1與圓C相切.
(1)求m的值;
(2)求橢圓E的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若直線l被圓x2+y2=4所截得的弦長為2
3
,l與曲線
x2
3
+y2=1
的公共點個數為( 。
A.1個B.2個C.1個或2個D.1個或0個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1,F2,且|F1F2|=4,一條漸近線的傾斜角為60°.
(I)求雙曲線C的方程和離心率;
(Ⅱ)若點P在雙曲線C的右支上,且△PF1F2的周長為16,求點P的坐標.

查看答案和解析>>

同步練習冊答案