數(shù)列{an}中an的前項(xiàng)和為Sn若有Sn=n2-4n+5則{an}的通項(xiàng)公式an=
 
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:利用公式an=
S1,n=1
Sn-Sn-1,n≥2
求解.
解答: 解:∵數(shù)列{an}中an的前項(xiàng)和為Sn若有Sn=n2-4n+5,
∴a1=S1=1-4+5=2,
當(dāng)n≥2時(shí),an=Sn-Sn-1=(n2-4n+5)-[(n-1)2-4(n-1)+5]=2n-5,
n=1時(shí),2n-5=-3≠a1
∴{an}的通項(xiàng)公式an=
2,n=1
2n-5,n≥2

故答案為:
2,n=1
2n-5,n≥2
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意公式an=
S1,n=1
Sn-Sn-1,n≥2
的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

我們知道:圓的任意一弦(非直徑)的中點(diǎn)和圓心連線與該弦垂直;那么,若橢圓b2x2+a2y2=a2b2的一弦(非過原點(diǎn)的弦)的中點(diǎn)與原點(diǎn)連線及弦所在直線的斜率均存在,你能得到什么結(jié)論?請(qǐng)予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-1)ex-x2
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,k](k>0)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別為∠A、∠B、∠C所對(duì)的邊,若a=2,b=3,∠C=60°,則sinA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f (x)=xlnx(x∈(0,+∞)).
(Ⅰ)求f (x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)g(x)=2f (x)-blnx+x在x∈[1,+∞)上存在零點(diǎn),求實(shí)數(shù)b的取值范圍;
(Ⅲ)任取兩個(gè)不等的正數(shù)x1、x2,且x1<x2,若存在x0>0使f'(x0)=
f(x2)-f(x1)
x2-x1
成立,求證:x0>x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若-
π
2
<β<0<α<
π
2
,cos(
π
4
+α)=
1
3
,cos(
π
4
-
β
2
)=
3
3
,則cos(α+
β
2
)=( 。
A、
3
3
B、-
3
3
C、
5
3
9
D、-
6
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=ax2+2x-3-a+
4
a
,求f(x)在[0,1]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α+
π
3
)+sinα=-
4
3
5
,-
π
2
<α<0,則cos(α+
3
)等于( 。
A、-
4
5
B、-
3
5
C、
4
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x2與直線y=2x所圍成圖形的面積為( 。
A、
16
3
B、
8
3
C、
4
3
D、
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案