【題目】已知向量 , ,設 .
(Ⅰ)若f(α)=2,求 的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a﹣b)cosC=ccosB,求f(A)的取值范圍.
【答案】解:(Ⅰ)向量 , ,
∵
那么: = = .
∵f(α)=2,即 = ,
∴ .
(Ⅱ)∵(2a﹣b)cosC=ccosB,
∴(2sinA﹣sinB)cosC=sinCcosB,
2sinAcosC=sinBcosC+cosBsinC=sin(B+C),
∴2sinAcosC=sinA,
∵sinA≠0,
∴ ,∴ .
∴ ,
,
∴ ,
∵ ,
∴f(A)的取值范圍為(2,3).
【解析】(Ⅰ)根據題意由兩個向量的數量積運算公式可得出 f ( x )的解析式,結合已知利用余弦函數二倍角的關系式式即可求出結果。(Ⅱ)利用正弦定理結合兩角和差的正弦公式即可得出2sinAcosC=sinA,進而可得出 cosC的值 故可求出角A的大小,再由已知角的取值范圍得出的取值范圍進而求出 f ( A ) 的取值范圍即可。
科目:高中數學 來源: 題型:
【題目】已知拋物線Ω:x2=2py(p>0),過點(0,2p)的直線與拋物線Ω交于A、B兩點,AB的中點為M,若點M到直線y=2x的最小距離為 ,則p=( 。
A.
B.1
C.
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),F(﹣c,0)為其左焦點,點P(﹣ ,0),A1 , A2分別為橢圓的左、右頂點,且|A1A2|=4,|PA1|= |A1F|.
(1)求橢圓C的方程;
(2)過點A1作兩條射線分別與橢圓交于M、N兩點(均異于點A1),且A1M⊥A1N,證明:直線MN恒過x軸上的一個定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(1+x)﹣ax, .
(Ⅰ)當b=1時,求g(x)的最大值;
(Ⅱ)若對x∈[0,+∞),f(x)≤0恒成立,求a的取值范圍;
(Ⅲ)證明 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列{an}的前n項和為Sn , 且 (a∈N+).
(1)求a的值及數列{an}的通項公式;
(2)設 ,求{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學為研究函數 的性質,構造了如圖所示的兩個邊長為1的正方形ABCD和BEFC,點P是邊BC上的一個動點,設CP=x,則AP+PF=f(x).請你參考這些信息,推知函數f(x)的值域是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com