(12分)在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.

(1)求證:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)

(1)見(jiàn)解析;(2)二面角F-BD-C的余弦值為.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,直三棱柱ABC?A1B1C1中, AC= BC=AA1,D是棱AA1的中點(diǎn),DC1⊥BD.
(Ⅰ)證明:DC1⊥BC;
(Ⅱ)求二面角A1?BD?C1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分)如圖,在邊長(zhǎng)為2的菱形中,,的中點(diǎn).(Ⅰ)求證:平面 ;
(Ⅱ)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分 )如圖,在三棱柱中,所有的棱長(zhǎng)都為2,.
  
(1)求證:;
(2)當(dāng)三棱柱的體積最大時(shí),
求平面與平面所成的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖,在中,上的高,沿折起,使 。
(Ⅰ)證明:平面ADB  ⊥平面BDC;
(Ⅱ)設(shè)E為BC的中點(diǎn),求AE與DB夾角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)如圖,四棱錐中,底面為矩形,⊥底面,,點(diǎn)是棱的中點(diǎn).                                                   
(Ⅰ)求點(diǎn)到平面的距離;
(Ⅱ) 若,求二面角的平面角的余弦值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在三棱錐中,、兩兩垂直,且,點(diǎn)是棱的中點(diǎn).
(1)求異面直線所成角的余弦值;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB的中點(diǎn).
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(14分)(理)在三棱錐S-ABC中,△ABC是邊長(zhǎng)為4的正三角形,平面SAC
⊥平面ABC,SA=SC=2,M、N分別為AB、SB的中點(diǎn)。
(Ⅰ)證明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的大。
(Ⅲ)求點(diǎn)B到平面CMN的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案